Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Transport Layer

The transport layer isthe lowest of the layersin the SO (International
Standards Organizaion) reference model resporsible for end-to-end quality of service
(QoS) in apadet-switched network. Re-sequencing ou-of-order data, recvery from
dataloss deteding and removing dupi caes, and flow control/congestion avoidance
are anongthe typicd functions of the transport layer. A QoS parameter of the
transport layer iswhat determines the level of serviceprovided by eat of these
functions.

Corrad et al. [1] explains that sometimes authors lump three QoS
parameters (loss order, and dupi cation) together under the term “reliability”, using
“reliable” to refer to atransport servicewhere no messges are lost, delivered in are-
arranged arder, or dugicaed. Transport QoS can be dassfied with greder preasion
if “reliability” strictly refersto dataloss defining areliable service @ one that all ows
no losswhatsoever. This more predse definition d reliability makes it independent
from the QoS parameters. “order” and “dugicaion’. “Order” refersto the extent to
which the transmitted sequence of elementsis preserved in delivery. An ardered
servicedelivers elementsin the exad same order as transmitted, while an unadered
service makes no such guarantee doou order. “Duplicaion’ refersto whether or not

multi ple wpies of the same dement may be delivered. A no-dupicaes srvice

deteds and dscards any dupicaes, while amaybe-dugicaes srvicedoes nat make
such aguarantee[2].

Flow control isthe final QoS parameter of the transport layer. This
parameter refersto the dfort put into avoiding retwork congestion bycontrolli ng the
flow of dataduringa wnredion. A flow-controll ed service has a medianism for
smoacthing ou the burstinessof data transmisson, while aservicethat is not flowed-

controlled has no such mechanism [3].

1.2 Traditional Protocols

Today’ s Internet provides a dhoice between two transport protocols: Unit
Datagram Protocol (UDP) [4] and Transmisson Control Protocol (TCP) [5]. These
protocols present extremesin terms of QoS. UDFP's srviceisunadered, unreliable,
maybe-dugicaes, andis nat flow-controlled; TCP's rviceisordered, reliable, no-

dugicates, andisflow-controll ed.

1.3 Internet Application Developer’'s Dilemma

The QoS neaded by dfferent applicaions varies gredly, and the fad that
traditional protocols only provide the extremes creadesadilemma. Today’s
developerstypicdly have three doices when designing an application for the Internet:
(1) use UDP, (2) use TCP, or (3) use UDP and buld the additional needed transport
functionality as part of the goplicaion development effort. When an application hes
to choose aether UDP or TCP when neither is appropriate, negative consequences
result. If TCPischasen for an applicaion that does not require total order and/or full
reliability, unrecessary delaysin information celivery may result. If UDP is used to

transmit vital information, important data may be lost or misordered uriessthe

application incorporates the complexity to provide order and reliability. However,
designing and implementing an application specific transport protocol that correctly
handles retransmission and flow control may be a larger effort than designing and
implementing the application itself. Hence, applications need a flexible transport

service that allows applications to receive the QoS they require [6].

1.4 POCv2 asa Solution

A flexible transport service offering a partially-ordered, partialy-
reliable (PO/PR) serviceisideal for applications that need flexible control over the
ordering and reliability of individual elements[6]. Such aserviceisessential for
balancing various QoS parametersin different applications, while allowing to build
upon previous work rather than duplicating efforts. This approach is consistent with
Application Level Framing as proposed by Clark and Tennenhouse [7].

To address this need, the Protocol Engineering Lab (PEL) at University of

Delaware has developed and implemented a new transport protocol, Partial Order
Connection version 2 (POCv2), which provides a spectrum of PO/PR services.
Figure 1 illustrates the entire spectrum of PO/PR services available and shows where
UDP and TCP exist in the spectrum. POCv2 is atransport service idea for
applications, such as multimedia applications, that need flexible control over the
ordering and reliability of individual elements. In addition, POCv2 offers an extra
feature that neither TCP nor UDP provide: a mechanism that facilitates coarse-

grained! synchronization of multimedia elements[10].

1 Coarse grained synchronization (also called tempora alignment) refers to
synchronizing the start and end of elements with respect to one another. This can be
distinguished from fine-grained synchronization (also called stream synchronization)
which refers to keeping parald streams synchronized with one another [8][9].

reliable

Partially-Ordered
Partially-Reliable

partialy reliable]
Services

UDP

unreliable partially ordered

unordered ordered

Figure 1: Spedrum of PO/PR Services

1.5 ReMDoR: POCv2'sTest System

ReMDoR (Remote Multimedia Document Retrieval) isamultimedia
document retrieval system that all ows authors to speafy synchronizaion requirements
and varying degrees of reliability for its multimedia elements[11]. To test the
benefits of POCv2, ReMDoR was developed with POCv2 feduresin mind. ReMDoR
allows comparative testing between POCv2 and traditional protocols sich as TCP and
UDP.

ReMDoR’s contribution to the field of Computer Science might seem

guestionable since many systems now exist that all ow authors to construct pre-
orchestrated multimedia documents. However, these existing systems are not

designed to transmit multimedia documents over the Internet and present them as they

arrive. ReMDoR isone of the first systems to transmit and present multimedia
documents over the Internet.

Anytime an applicaion transmits and receves data over the Internet,
consideration must be given to the cae of network errors. For Internet-oriented
multimedia gpli cations, presenting the document corredly may becme amore
serious problem as network condtionsworsen. The PEL reseach group hes proposed
that in such situations, it is appropriate to provide for “gracdul degradation” of the
multimedia document presentation [6]. This approad recgnizes that in most
multimedia documents, not all elements have equal importance or the same QoS
requirements, some dements are essntial to the presentation, whil e others are “nice
to have”. To provide thereliability and partial order (PO) requirements necessary,
ReMDoR incorporates reliability and adering o the individual elements diredly into
the authoring d the documents; thus, the authoring stage can exploit POCv2 feaures
to insure the best possble document presentation regardlessof network condtions.

ReMDoR’s client/server system is being rebuilt from the “ground up to
improve performance, efficiency, and future research and development capabiliti es.
Much o my work has contributed to the redesigning and rebuilding d ReMDoR,
which isnow nealy complete. The completely rebuilt system will i n essence be the

second gneration d ReMDoR, thus eaning the name ReMDoR 2.0.2

2 All second generation system comporents that make up ReMDoR 2.0, such as the
server, browser, and PMSL language, are dso labeled version 20. Likewise, any
referenceto the first generation & ReMDoR or any comporent thereof will be
referred to asversion 10.

The remainder of the thesisis structured as follows. Chapter 2 explains
the details of ReMDoR to give an understanding of what the system is and how it
works. Additions and modifications introduced in version 2.0 are presented.

Conclusions and future work are discussed in Chapter 3.

Chapter 2

ReMDoR

2.1 Architecture

The architecture of ReMDoR is depicted in Figure 2. ReMDOR consists
of aclient browser and a PMTP (Prototype Multimedia Transport Protocol) server
that communicates over the Internet with similar interactions to that of Web browsers
and HTTP servers3. The user specifiesthe URL of a document to the browser, which
in turn initiates an Internet connection to the appropriate server. Once the connection
is established, the browser requests the document from the server, and the server
replies by sending the data for the requested document back to the browser. The
browser processes the incoming data as it arrives, thereby presenting the multimedia
document to the user.

The browser, however, is not responsible for delivery order and reliability
requirements of the document; in fact, the browser has no knowledge about such
requirements. The server communicates these requirements to the POCv2 transport
layer below, and from then on, the transport layers on both sides of the connection are
responsible for delivering the appropriate order and reliability requirements. |f
ReMDoR isrunning over atraditional transport protocol, such as UDP or TCP, then

order and reliability requirements that are requested by the server are ignored; the

3 Table 1 at the end of the chapter outlines the division of work among the various
components of ReMDoR 2.0.

transport protocol will simply deliver the QoS that it is designed to provide:
unardered/unreliable (UDP), or ordered/reli able (TCP).

Text Editor
(vi, emacs)

Offline
Processing

PTPC
Compiler

I PMFFI
File

\~

Client (browser)

POCv2 POCv2
Transport L ayer Transport Layer

Figure2: Architecture of ReMDoR 2.0

During the development of ReMDoR 2.0, the posshility of experimenting
over more than just UDP, TCP, and POCv2 arose. The PEL reseach goup ceaded
to begin developing aher innovative transport protocols in additionto POCv2. This
posed a problem; any time anew transport protocol would be introduced, ReMDoR

needed to add complex spedal case mde to incorporate the diff erent protocols

Application Programming Interfaces (APIs). To avoid adding code for new APIs
every time atransport protocol is developed, a Universal Transport Library (UTL)
was developed. With UTL, ReMDoR can smply use acommon APl wrapper to
access the various transport protocols available [11]. UTL puts ReMDoR in a position
to serve as an experimental application for all new transport layers that are offered by
UTL.

Although the basic model of interaction is similar to that used by the Web,
there are many differences. The next few sections will discuss these differences by
going into greater detail about the type of documents, the document specification

process, the server, and the client or browser.

2.2 Temporal Documents

Unlike static Web documents, ReMDoR documents are temporal; that is,
they play out over time. The documents are made of elements such as audio, till-
images, text, geometric shapes, pauses, interactions, and erase events (which remove
elements from the screen). During the authoring process, each element isassigned a
list of successors that may consist of any number of elements (it may even be empty).
Once the document is complete, there exists alogical order in which the multimedia
elements may be presented. This order can be represented as a directed acyclic graph

or a PO graph of all the elements, as shown in Figure 3.

2.3 Authoring ReMDoR Documents
There are two basic stepsin authoring a ReMDoR document: (1) specify
the document, and (2) compile the document. The document is specified using the

Prototype Multimedia Specification Language (PMSL), which is presented in section

2.3.1. Once PMSL specification exists, it is compiled into the Prototype Multimedia
File Format (PMFF), which isthe file format in which a server actually storesthe
documents. The details of the compiler and the compilation process are explained in
section 2.3.2. Section 2.3.3 explains the purpose of the PMFF file and how it is
generated.

ir Filter

Add Ol

Continue
Button

B 5iock Element (One Packet Element) B sicom Element (Multiple Packet Element)

Figure 3: Exampleof PO Graph for a Multimedia Presentation

10

2.3.1 Prototype Multimedia Specification Language (PMSL)

The present version of PMSL is the second version of the language.
PMSL 1.0 was developed by Phillip Conrad and Edward Golden in the PEL research
group. The PMSL syntax has been modified and new features have been added to the
language to ease document authoring and enhance system efficiency. Appendix A
presents the legal syntax of PMSL 2.0, which is backward compatible to allow the use
of existing documents aready written in PMSL 1.0. The new features of PMSL 2.0
are represented in Appendix A, but will be explained more thoroughly as they come
up in the next few paragraphs.

A PMSL document specification isan ASCII description of a multimedia
document. PMSL documents consist of color definitions (colordefs), font definitions
(fontdefs), pen definitions (pendefs), text formatting definitions (txtformatdefs), and
multimedia elements (elements). Colordefs define and assign nicknames to colors that
can be used later in the document. They are optional as long as none of the elements
in the document need color settings. Fontdefs are similar to colordefs except that they
define fonts. Fontdefs are also optional unless atext element exists. Pendefs are pre-
structured combinations of variables (colors, fonts, and line widths) used by some
graphic elements to specify their attributes. Pendefs are optional in two cases. (1) if
the document does not contain any graphic elements that rely on these variables, and
(2) if documents are writtenin PMSL 1.0. Txtformatdefs are aso pre-structured
combinations of variables that have been added in PMSL 2.0. Txtformatdefs allow
text formatting to be specified in text elements by smply referring to pre-set
variables, these variables are only availablein PMSL 2.0 (left margin, right margin,
top margin, line spacing, and justification). Txtformatdefs are completely optional,

allowing an author the choice of either setting text formatting variables manually in

11

each text element definition, or setting them by referring to a txtformatdef. Pendefs
and txtformatdefs speed up authoring documents which repeatedly use a set of
variablesin multiple elements; timeis saved by setting the variables oncein a
structure definition, and then referring to the structure in multiple elements.

Elements are the multimedia elements which comprise the presentation
itself. There are two kinds of elements. data elements, and control elements. Data
elements present either audio or visual data to the presentation; these type of elements
include: audio clips, still-images, text, and geometric shapes. Control elements,
however, do not present anything; they instead control the presentation and flow of
the data elements. Control elementsinclude: pauses, interactions, and erase events
(which remove objects from the screen). Since the documents are temporal, the
elements require synchronization. Therefore, elements are organized into a PO which
defines the presentation synchronization and ordering requirements. In addition,
PMSL allows an author to define areliability class for each element.

Other than pendefs and txtformatdefs, two more features have been added
inPMSL 2.0. InPMSL 1.0, text was awkward to specify. Each line of text had to be
placed in a separate el ement with redundant color, font, and coordinates. It was even
more cumbersome to make modifications to the text, since any addition or deletion of
character(s) had an affect on all of the text elements with which it was grouped; each
one had to be manually modified to reflect the changes in what might be only one
element in the group. In PMSL 2.0, the author specifies the margins, justification
type, line spacing, and the text; the text isthen automatically wrapped and formatted

appropriately by the system.

12

The last modificaion made to PMSL isthe incorporation d charaders,
underscores, and hyplensinto element ID’s. PMSL 1.0 only allowed numbersin the
ID’s, which made it confusing and awkward to creae and modify documents. With
the previous labeling scheme, an author had two choices: (1) try putting some logic
into the numbered ID’s or (2) number the ID’ s arbitrarily. Of course, (1) would be a
wiser dedsion. However, after multi ple revisions to a document containing many
elements, it would be difficult to retain the logic in the numbered ID’s assgned. In
the end, most documents would inevitably end upwith choice(2): ID’sarbitrarily
numbered. The new ID labeling scheme presented with PMSL 2.0 patrays an ideaof
what the dement does, withou having to look into the detail s of the dement

definitionitself; this helpsto make the source of a document more human readable.

232 PMSL ToPMFF Compiler (PTPC)

After amultimedia document is geafied in PMSL, one more step
remains to have the document realy for retrieval over the Internet. The document
must be ompiled into PMFF form. The server does not fetch the PMSL speaficaion
of the document; the server expedsto find a @mpiled verson d the document
(whichisin PMFF form).

ReMDoR 1.0 dd na compile the PMSL speaficaion into the PMFF
format. Infad, no df-line processngwas performed at all. The server would fetch
the PMSL document, and perform the duty of the PTPC compiler inred time asa
document was being fetched. Asaresult, the server resporse time was delayed
significantly, worsening with larger and more complicaed PMSL documents. To the
user at the browser side, the gplication seemed to “hang ug for awhile before the

document was presented. This“hang ug was due to the low server resporse time.

13

To spead upserver resporsetime, al processng d adocument
spedficaionisdore offline andin advance With this approad, when a document is
requested, the server can just fetch the data it needs withou any processng, and then
transmit the data to the browser immediately. Basicdly, the server shoud na be “too
smart”; it shoud be told what to doand when to doit. This new philosophy
motivated the ideafor the PTPC compil er and the PMFF format (explained in further
detail in sedion 23.3).

The duties of the PTPC compiler are asfollows. First, the PTPC compil er
uses Lex and Yacctodsto parsethe PMSL spedficaion, extrad al of the important
data, and dacethe data into meaningful structures. Next, a PO graph d the
document’ s elementsis derived by traversing the entire dement list and setting all of
the succesor painters corredly. Oncethe PO graphis produced, the graph must be
trangitively reduced. A direded agyclic graph (PO graph) is trangitively reduced if
and orly if for any edge, e(v,,v»), there is no other path joining v, to v, through other
vertices. Figure 4 presents an example of an original PO graph and itstransitively
reduced PO graph.

The next step isto set up and process the front queue from the transitively
reduced PO graph (Figures 6a-h illustrate the process). The front queue is a queue of
all the elementsin the front of the PO graph (i.e., elements that are ready to be
transmitted). Elements are fed to the front queue when the number of their
predecessors that are waiting to be transmitted reaches zero. An element isremoved
from the front queue when all its datais transmitted. Most elements are block
elements; all of the data associated with ablock element is transmitted in one packet.

Elements such asimages and audio, on the other hand, are known as stream elements.

14

They require multiple transmissions to completely send all of the cells that make up
the entire data. Since the compiler is not actually transmitting data, the elements are
not being transmitted as they are removed from the front queue. Instead, the datais
written to afilein PMFF form during PMFF generation, which happens to be the next
and final stage of PTPC compilation. The PMFF format is explained in greater detail

in the next section.

----> represents atransitive edge

Figure4: (A) Original PO Graph (B) Transtively Reduced PO Graph

2.3.3 Prototype Multimedia File Format (PMFF)
The format of a PMFF fileis presented in Appendix B. A PMFFfileis
divided into three mgjor sections: pendefs, service profile, and elements. The pendef

section lists all the pens that were defined in the PMSL specification either explicitly

15

or implicitly (PMSL 1.0 syntax implicitly defines pens). The service profile ansists
of an array of integersthat represent the reliability and ader associated with eat and
every document element. Finally, the dement sedionis the output of the front queue
processng mentioned abovein sedion 23.2. Inesence, it isalist of “realy to gd',
padaged updata that the server can just read and transmit with littl e intelli gence

needed onthe server’s part.

24 Server

The duty of the server isto listen for any connedion requests from
browsers fetching dauments that exist on the server site. ReMDoR 2.0's srver isno
longer aware of PMSL spedficaionsasit oncewasin verson 10; insteal, the server
expeds to find the PMFFfile for the document being requested. If the appropriate
PMFFfileisnat found bythe server, the browser is natified of the non-existing
document. Otherwise, the server begins reading and transmitting the document data
to the browser.

PMFF data transmisson consists of threemajor stages. The server first
transmits all the pendefsreliably, but unadered. Pendefs are transmitted first to
ensure that all of the resources neaded for proper document presentation arrive before
any element data arives, thus avoiding “ungacédul degradation” to the presentation.
Transmitting pendefs while dement datais also being transmitted may cause
unrecessary delays during presentation die to loading arriving pen information.
However, the pendefs use an unadered service becaise this srvice provides an
advantage; if adata padet islost onits original transmisson, the dient can proceed

with processng the others whil e the lost one is retransmitted [1].

16

In the second stage of PMFF data transmisgon, the serviceprofileis
pased down to the transport layer. Withou the entire serviceprofile & the dient
side, elements can na recave the proper ordering and reli ability they require. The
server and lrowser, however, have no knovledge of order and reliability
requirements; the transport layers on bdh sides of the cnredion are resporsible for
these requirements.

Element data is then transmitted in the third and final stage of PMFF
data transmisson. The arangement of the dement datain the PMFF file eaesthe job
of the server. Block elements and stream elements’ cdls are drealy listed in the
corred order for transmisson. In addition, the POCv2 transport layer at this point
arealy hasthe reliability and adering requirementsfor al the dements. The server
does not need to concern itself with these detall s; it just transmits the data in the order

spedfied in the PMSL file, and leaves the work to the transport layer.

2.5 Browser (Client)

The browser allows a user to conned to a server and request a document
for presentation. The browser then presents the document elements as they are
delivered bythe transport service[1]. The browser consists of presentation dsplay
code and wser interface ode. The entire browser code is much more moduarized
than it wasin version 10. Improved moduarizéion d the code dlows for faster
prototyping and easier integration d future reseach work (such as new image
compressons). Sincethe presentation dsplay code is presented in Conrad et al [1],
only modificalionswill be explained. Detail s of the user interfacewill be presented

due to the significant changes in ReMDoR 2.0.

17

Currently, the only modificaion to the presentation code isin the image
display process In ReMDoR 1.0, the browser did na display any part of an image
until it could be displayed initsentirety. In ather words, the browser buffered image
datauntil al of it arrived; then, it displayed the image dl at once Althoughthe ade
for this type of image display processngis smple, thereis a more useful way:
progressve image display. This meansthat once the PO restraints dictate that an
image isready to be presented, the image is updated to the display as the data arrives
[12]. To explain why progressve image display is preferred, the underlying gal of
ReMDoR and POCv2 must be kept in mind: that goal isto deliver afaster, more
“gracdully degradable” presentation to the user. System performanceis enhanced
when image data can be upckted to the screen at an ealier point intime. With thisin
mind, progressve image display is clealy better.

ReMDoR 2.0 involved a major over-haul to ReMDoR 1.0's user interface
(seeFigure5). The dangesto the user interface cede amore user-friendy
environment for experimenting and cata gathering. The most visible dange isthe
Web browser look-and-fed. ReMDoR 2.0’s interfaceincorporates: (1) aURL style
of retrieving remote documents, (2) an ability to browse diredories, (3) bookmarks,
(4) navigation butons, (5) a “view source” fedure, and (6) a message field showing
conredion and presentation progress Thanksto URL style of addressng remote
documents, experiments can be run “unattended” by using an automated script.
Debuggng menus have been added to the interfaceto easlly isolate various modues
into producing debuggng ouput. Asaresult, identifying and locéting software bugs

can be dore quickly and easlly; thus, promoting faster prototyping. With the new

18

user interface, the ability to run experiments via script control not only adds

convenience, but is also more productive.

[#] browser

WELCOMIE TO PARIS!!
WELCOME TO PARIS!!

0ONTg
Darne Cathedral
"Bastille

Luxerbourg® SOrbonne .
Gar’d,tr\s LIV Chiteal
e ¥mcennes

o
ONTREUIL

aubourg
Darne Cathedral
"Bastille

Einiz de

i E
hateau
Wincennes

ancann e

ch nu. I

whick
of the most popular

)NTINUE

CONTINUE

ReMDoR 1.0 ReMDoR 2.0

Figure 5: Changesin Browser’ s User Interface

19

artial Order

P

Figure6a: (Snapshot 1) Elem 1 hasno predecessors-- it isinserted into the
Front Queue

Front Queue

Partial Ord

Elem 3 I Elem 2 M

Front Queue Transmitted

Figure6b: (Snapshot 2) Elem 1isde-queued & transmitted -- its successorsare
released; Elem 2, 3 have no predecessors -- they areinserted into
the Front Queue

20

artial Order

P
m
3
w

D

Front Queue Transmitted

Figure 6¢: (Snapshot 3) Elem 2 isde-queued & transmitted —its siccesorsare
released; Elem 3 remainsin the Front Queue; No ather dement can
beinserted into the Front Queue at thistime

Order
g :
..‘?l.:

Partial

Elem4 p
(Cell 1))

Front Queue Transmitted

Figure 6d: (Snapshot 4) Elem 3isde-queued & transmitted -- its siccesorsare
released; Elem 4 hasno predecesors—sinceit isa stream element,
itsCell 1isinserted into the Front Queue

21

Order

Partial

Elem4 p
(Cell 2)

Front Queue Transmitted

Figure 6e: (Snapshot 5) Elem 4'sCell 1isde-queued & transmitted -- its
succesor can not be released at thistime; Elem 4'sCell 2is
inserted into the Front Queue

Order
m':
3 :
B

Partial

Elem4)
(Cell 3)

Front Queue Transmitted

Figure 6f: (Snapshot 6) Elem 4'sCell 2isde-queued & transmitted —its
succesor can not be rdleased at thistime; Elem 4'sCell 3is
inserted into the Front Queue

22

Order

Partial

I ED

Front Queue Transmitted

Figure 6g: (Snapshot 7) Elem 4'sCell 3isde-queued & transmitted -- its
successor can now be rdeased; Elem 5isinserted into the Front

Queue

Partial Order

Front Queue Transmitted

Figure 6h: (Snapshot 8) Elem 5isde-queued & transmitted —it hasno
succesorstorelease; Front Queue processng isdone

23

Table 1: Division of Work

PMSL 2.0 features
new text handling
txtformatdefs

new element I1D's
all other changes

‘PTPC routines
parsing

produce partial order
transitive reduction
PMFF generation

‘ PMFF
specification
implementation

‘ Server
specification
implementation

‘Browser features
modularization

progressve image display

new user-interface

mysel f
mysel f
mysel f
Conrad and myself

mysel f
mysel f
Conrad
mysel f

Conrad and myself
mysel f

Conrad and myself
Conrad and myself

Conrad and myself
Conrad and myself
mysel f

24

Chapter 3

CONCLUSION AND FUTURE WORK

ReMDoR 2.0 introduces improvements that contribute to ongong
reseach in multimedia document retrieval over PO/PR transport protocols. First,
verson 10’ sinstantaneous image display has been replaced by pogressve image
display. Asaresult, ReMDoR 2.0 isableto dsplay moreimage data & an ealier
point intime; thus, delivering afaster, more “gracdully degradable” presentation to
the user. Seoond moduarizaion d code and better debuggng tods all ow faster
software development in ReMDoOR 2.0; this eases the incorporation d new fedures
(such as video) in the system that might be useful for future reseach. Aninterface
more similar to Web browsersis one of the new feaures that makes runnng
experiments more anvenient and more productive with ReMDoR 2.0. Additionally,
the server’ s offline PTPC compil ation enhances efficiency and speeds up daument
retrieval, making individual document experimenting lesstime ansuming. Gathering
data, however, requires many experiments to be repeaed, which may beame tedious
andtime consuming if they must be performed manually. To addressthisissue, anew
scripting ability to automate experiments has been added; it improves experimenting
and cbta gathering efficiency by all owing experimentsto be repeaed many times,
often at night during low traffic loads, withou human intervention.

The improvementsin ReMDoR 2.0 contribute to the research of new
network transport protocols and rew image compressons. Usage of UTL, allows

ReMDOoR to easlly incorporate new innovative protocols, such as UC, SP, and TX

25

[11], into the comparative testing d transport protocols. 1n addition, new image
formats, such as Wavelet-based encoding and Network-Conscious GIF [13][14], can
be eaily introduced in to the newly moduarized image processng routines.
ReMDoR 2.0 opens new paths and sparks new ideas for further reseach.
With ReMDoR 2.0, POCv2 can be used to experiment with and test the performance
of multimedia document retrieval over a PO/PR transport protocol. Usingthe Lossy
Router (LR), various levels of losscan beintroduced into avirtually losdessEthernet
conredion ketween the server and the browser [6] (seeFigure 7). Obvioudy, a
PO/PR service provides no kenefit if the network has nolossor reordering, however,
it will be interesting to see @ which lossrate PO/PR service startsto provide
significant benefit that can be perceived bythe user. In addition, POCv2'sfedure,
“gracdul degradation”, can be put to the test over a spedrum of diff erent network

condtions.

—
\%
Client (browser) i Server

POCv2 POCv2
—==__Fu|
Transport L ayer (Ethern Transport Layer

L ossy Router

Figure7: Testing Using the Lossy Router

26

ReMDoR can also be used to compare the overhead of a PO/PR service
(POCv2) vs. an unadered/unreliable and vs. an ordered/reliable service This
comparison can be dore by retrieving dauments over POCv2 with al elements st to
“no ader, everything unreliable” or “total order, everything reliable”, respedively;
then retrieving the same documents over an unadered/unreliable and an
ordered/reli able transport protocol.

Althougha PO/PR service seamsto be an efficient solution for remote
multimedia document retrieval and aher Internet applicaions, the gpropriate
definition and implementation o such a service can be quite challenging. POCv2 is
only ore flavor of a PO/PR service Many reseachers[15-23], including the PEL
research groud24], are aurrently working on dher definiti ons and implementations of
PO/PR services. These dforts are working towards the goal of determiningif a
flexible, general transport protocol isfeasible; andif so, what are the speaficaions of
such aprotocol? Incorporating rew experimental transport protocols into the
framework of ReMDOR as they are developed, will alow ReMDoR to be one of the

vehicles used to investigate this reseach gal.

27

Appendix A

PMSL 2.0 SYNTAX

< > non-terminals

bold case sendtiveterminals
bold & italics caseinsengtiveterminas

= equals or reducesto

| or
= not (everything EXCEPT what follows it)
group together
optional
Zero or more OCcurrences

<Document> ::= [<ColordefList>] [<FontdefList>] [<PendefList>] [<TxtformatdefList>] <Elements>

<ColordefList> ::= <Colordef> { <Col ordef>}
<Colordef> ::= COLORDEF <XColorName> <Id>

<XColorName> ::= <String>

<FontdefList> ::= <Fontdef> { <Fontdef>}
<Fontdef> ::= FONTDEF <ld>
::=" — (<Letter> | <Digit> | - | *) {<Letter> | <Digit> |- | *} "

<PendefList> ::= <Pendef> { <Pendef>}

<Pendef> ::= PENDEF <Id> <PendefBody>

<PendefBody> ::= <PenAttribute> { <PenAttribute>}

<PenAttribute> ::= (FOREGROUND <Id>) | (LINEWIDTH <Int>) | (FONT <Id>)

<TxtformatdefList> ::= [<TxtformatdefList>] <Txtformatdef>
<Txtformatdef> ::= TXTFORMATDEF <Id> <TxtformatdefBody>

28

<TxtformatdefBody> ::= TOP <Int> LEFT <Int> RIGHT <Int> JUST <JustType> SPACE <Int>
<JustType> =L |C|R

<Elements> ::= [<Elements>] <ElemBlock>

<ElemBlock> ::= <ElemBlockWithNext> | <ElemBlockWithoutNext>
<ElemBlockWithNext> ::= ELEMENT <ld> : <ElemNext> . <Reliability> <ElemBody>
<ElemBlockWithoutNext> ::= ELEMENT <ld> <Rdiability> <ElemBody>
<Rdiahility> ::= RELIABLE | UNRELIABLE | PARTIALLY-RELIABLE

<ElemNext> ::= [<ElemNext> ,] <ld>

<ElemBody> ::= <Box> | <Line> | <Text> | <Audio> | <Image> | <Hotspot> | <Pause> | <Null>
| <Erase> | <End>

<Box> ::= <BoxOldSyntax> | <BoxNewSyntax>

<BoxOldSyntax> ::= GRAPHIC FOREGROUND <Id> LINEWIDTH <Int> . BOX <CornerX1>
<CornerY 1> <CornerX2> <CornerY 2>

<BoxNewSyntax> ::= PEN <ld> BOX <CornerX1> <CornerY 1> <CornerX2> <CornerY 2>

<Line> ::= <LineOldSyntax> | <LineNewSyntax>

<LineOldSyntax> ::= GRAPHIC FOREGROUND <Id> LINEWIDTH <Int>. LINE <X1> <Y 1>
<X2><Y2>

<LineNewSyntax> ::= PEN <Id> LINE <X1> <Y 1> <X2> <Y2>
<X1>::=<Y1>:=<X2> ::=<Y2> :=<Int>

<Text> ::= <TextOldSyntax> | <TextNewSyntaxWithFormat> | <TextNewSytaxWithoutFormat>

<TextOldSyntax> ::= GRAPHIC FOREGROUND <Id> FONT <ld> . TEXT <CornerX> <CornerY >
<String> .

<TextNewSyntaxWithOutFormat> ::= PEN <ld> TEXT TOP <Int> LEFT <Int> RIGHT <Int> JUST
<JustType> SPACE <Int> <StringList>

<TextNewSyntaxWithFormat> ::= PEN <ld> TEXT TXTFORMAT <Ild> <StringList>
<StringList> ::= [<StringList>] <String>

<Audio> ::= AUDI O <Path>

<Image> ::= <ImageOldSyntax> | <ImageNewSyntax>
<ImageOldSyntax> ::= GRAPHIC . IMAGE <CornerX1> <CornerY 1> <Path>

29

<ImageNewSyntax> ::= IMAGE <ImageType> <CornerX1> <CornerY 1> <Path>
<ImageType> ::= GIF | NCG

<Hotspot> ::= <ContinueOl dSyntax> | <PenContinue> | <PenLink> | <NoPenContinue> |
<NoPenLink>

<ContinueOldSyntax> ::= GRAPHIC . HOTSPOT <CornerX1> <CornerY 1> <CornerxX2>
<CornerY2> CONTINUE

<PenContinue> ::= PEN <ld> HOTSPOT <CornerX1> <CornerY 1> <CornerX2> <CornerY 2>
CONTINUE

<PenLink> ::= PEN <ld> HOTSPOT <CornerX1> <CornerY 1> <CornerX2> <CornerY 2> LINK
<Url>

<NoPenContinue> ::= HOTSPOT <CornerX1> <CornerY 1> <CornerX2> <CornerY 2> CONTINUE
<NoPenLink> ::= HOTSPOT <CornerX1> <CornerY 1> <CornerX2> <CornerY 2> LINK <Url|>
<Url> ::= " pmtp:// <Hostname> : <Port> : <Mechanism> / <Path> "

<Hostname> ::= <HostnameSegment> . { <HostnameSegment> .} <HostnameSegment>
<HostnameSegment> ::= <L etter> { <L etter>}

<Port> ::=<Int>

<Path> ::= [/] <PathSegment> {/ [<PathSegment>]} [/]

<PathSegment> ::= (<Letter> | <Digit> | . | #|_|-) { <Letter> | <Digit>|. |#|_|-}

<Pause> ::= PAUSE <Time>

<Time> ::=<Int>

<Null> ::= NULL

<Erase> ::= ERASE <Id>

<End> ::= END
<Letter>::=A|B|C|D|E|F|G|H[I]|J|K|L|M|N|O|P|Q|R|S|IT|U|VIWI|X]|Y|Z
<Digit>::=0]1]2|3|4|5]|6]7|8]9

<Int> ::= <Digit> {<Digit>}

<Charld> ::= <Letter> { <Letter> | <Digit>| _| -}

<ld> ::= <Int> | <Charld>

30

<CornerX1> ::= <CornerY 1> ::= <CornerxX2> ::= <CornerY2> ::= <Int>
<String>::=" {~(\n)} "
<FilePathName> ::= <String>

31

Appendix B
PMFF FILE STRUCTURE

non-terminals

terminals

equals or reducesto

or

not (everything EXCEPT what follows it)

group together

optional

Zero or more occurrences
everything past % is a comment

<File> ::= <PendefSedion> <ServiceProfile> <ElementSedion>

<PendefSedion> ::= <NumPens> { <Pen>}

<NumPens> ::= <Int> %total number of pensin the pendefs section

<Pen> ::= <PenBodyL ength> <PenBody> \n

<PenBodyL ength> ::= <Int> %total number of characters (including spaces) in the body of the pen
<PenBody> :: = pen <PenNum> / <NumPens-1> <Penld> fg <Color> lw <Linewidth> ft
<PenNum> ::= <Int> % the number assigned to this pen (numbered O to <NumPens> - 1)
<NumPens-1> ::= <Int> % total number of pens minus one (<KNumPens> - 1)

<Penld> :: = (<Int> | <Charld>) | <PenOnTheFlyld>

<PenOnTheFlyld> ::=_$PEN <Int> _

<Color> ::= <String> | 0 % a 0 means the color is not specified

<Linewidth> ::= <Int> % a linewidth of -1 meansit is not specified

<Fornt> ::= (" — (<Letter> | <Digit> | - | *) {<Letter> | <Digit> |- | *} ") | <NoFont>

<NoFont> ::= 0 % a0 meansthe font is not spedfied

<ServiceProfile> ::= <ServiceProfil eLength> <NumElements> <ElemProfil e> { ElemProfil €}

32

<ServiceProfileLength> ::= <Int> % number of 32-bit integers (including length) in entire profile
<NumElements> ::= <Int> %total number of elementsin the document

<ElemProfile> ::= <Reliability> <NumSuccessors> <Successor>

<NumSuccessors> ::= <Int> % number of succesors the dement has

<Successor> ::= <Int> % succesor’s element number (impli citly numbered in the service profil €)

<ElementSection> ::= <Element> { <Element>}

<Element> ::= <ElemNum> <MoreCed|s?> <NumFileBytesToRead> <ElemBodyL ength> elem
<ElemNum> / <NumElements-1> <Elemld> <ElemBody> [<ElemTrailer>] \n

<ElemeNum> ::= <Int> % the number assgned to this element (numbered 0to N-1)

<MoreCedlls?> ;= <Int> %1 if this element has more cdls (or data packés) to be sent; 0 if not
<NumFileBytesToRead> ::= <Int> % number of bytesthat need to read fromafile

<ElemBodyL ength> ::= <Int> % number of characters (including spaces) in the body of the dement
<NumElements-1> ::= <Int> %total number of elements minus one (< NumElements> - 1)
<Elemld> ::= <ld>

<ElemBody> ::= <Graphic> | <Hotspot> | <Erase> | <Audio> | <Pause> | <Null> | <End>
<ElemTrailer> ::= <FileOffset> [<FilePath>] % FilePath is only sent with the first cdl

<FilePath> ::= [/] <PathSegment> {/ [<PathSegment>]}

<PathSegment> ::= (<Letter> | <Digit> | . | #|_|-) { <Letter> | <Digit>|. |#|_|-}

<Graphic> ::= draw (<Line> | <Box> | <Text> | <Image>)

<Line> ::=line <X1> <Y 1> <X2> <Y 2>
<X1>::=<Y1>:=<X2> ::=<Y2> :=<Int>

<Box> ::= box <CornerX1> <CornerY 1> <CornerX2> <CornerY 2>

<CornerX1> ::= <CornerY 1> ::= <CornerX2> ::= <CornerY 2> ::= <Int>

<Text> ::= text <TopMargin> <LeftMargin> <RightMargin> <Justification> <Spacing> \n <StrList>
<TopMargin> ::= <LeftMargin> ::= <RightMaring> ::= <Spacing> ::= <Int>

<Justification> ::=1 | c|r

<StrList> ::= <String> { <String>}

<String>::=" {~(\n)} "

33

<Image> ::= image <ImageType> <CornerX1> <CornerY 1>
<ImageType> ::= gif | ncg

<Hotspot> ::= hotspot <PenNum> <CornerX1> <CornerY 1> <CornerX2> <CornerY 2>
<HotspotType> <Url>

<HotspotType> ::=c || %c = continue hotspot; | = link hotspot

<Url> ::= <NoUrl> | (" pmtp:// <Hostname> : <Port>: <Mechanism> / <Path>")

<NoUrl>::=0

<Hostname> ::= <HostnameSegment> . { <HostnameSegment> .} <HostnameSegment>

<HostnameSegment> ::= <L etter> { <L etter>}

<Port> ::=<Int>

<Path> ::= <FilePath> [/]

<Erase> ::= erase <ElemNum>

<Audio> ::= audio

<Pause> ::= pause <PauseTime>

<PauseTime> ::= <Int>

<Null> ::= null

<End> ::=end

<Letter> :=A|B|C|D|E|F|G|H|I|J|K|ILIM|N|O|P|QIR|S|T|U|VIWI|X]|Y]|Z
<Digit>::=0|1]|2|3|4|5|6]7]8]9

<Int> ::= <Digit> {<Digit>}

<Charld> ::= <Letter> { <Letter> | <Digit>| _| -}

<ld> ::= <Int> | <Charld>

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

REFERENCES

P. T. Conrad, E. Golden, P. D. Amer, and R. Maradi. A multimedia
document retrieval system using partially-ordered/partialy-reliable transport
service. In Multimedia Computing andNetworking 1996(MMCN96,
sporsored by SPIE/IS& T), San Jose, CA, USA, January 1996.

S. Iren, P. D. Amer, and P. T. Conrad. The transport layer: Tutorial and
survey. Technical Report 98-02, CIS Dept., University of Delaware, January
1998.

A. S. Tanenbaum. Computer Networks. Prentice-Hall, 1996.

J. B. Postel. User Datagram Protocol. Internet Request for Comments
RFC768, August 1981.

J. B. Postel. Transmission Control Protocol. Internet Request for Comments
RFC793, September 1981.

P. D. Amer, P. T. Conrad, E. Golden, S. Iren, and A. Caro. Partially-ordered,
partially-reliable transport service for multimedia applications. 1n Advanced
Telecommunications/Information Distribution Research Program Annud
Conference, College Park, MD, January 1997.

D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new
generation of protocols. In SGCOMM 90, pages 200-209, Philadelphia,
Pennsylvania, September 1990. ACM. Computer Communications Review,
Vol. 20(4), September 1990.

M. Wynblatt. Position statement on multimedia synchronization. In IEEE
Workshop onMultimedia Synchronization, Tysons Corner, VA, May 1995.

J. Schnepf, J. A. Konstan, and D. Du. Dong FLIPS: Flexible interactive
presentation synchronization. In Proceelings of the Internationd Conference
on Multimedia Computing and $stems, pages 213-222, Washington, DC,
May 1995. |EEE.

35

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. T. Conrad, P. D. Amer, R. Maradli. Graceful degradation of multimedia
documents via partial order and partial reliability transport protocols. In

| EEE Workshop onMultimedia S/nchronization, Tysons Corner, VA, May
1995.

P. T. Conrad, P. D. Amer, M. Taube, G. Sezen, S. Iren, and A. Caro. Testing
environment for innovative transport protocols. In Advanced
Telecommunications/Information Distribution Research Program Annud
Conference, College Park, MD, February 1998.

K. Sayood. Introductionto Data Compresson. Morgan Kaufmann
Publishers, Inc, 1996.

P. D. Amer, S. Iren, G. Sezen, P. T. Conrad, M. Taube, and A. Caro.

Network-conscious GIF image transmission over the Internet. In 4th

Internationd Workshop onHigh Performance Protocol Architedures
(HIPPARCH ’98), June 1998.

S. Iren, P. D. Amer, and P. T. Conrad. Network-conscious compressed
images over wireless networks. In 5th Internationa Workshop onlnteractive
Distributed Multimedia Systems and Telemmnunication Srvices (IDMS 99)
Odlo, Norway, September 1998.

M. Ahuja. Flush primitives for asynchronous distributed systems. Info
Processng Letters, 34(1):5-12, February 1990.

K. P. Birman. The process group approach to reliable distributed computing.
Comnunications of the ACM, 36(12):36-53, December 1993.

D. Cheriton. VMTP: Versatile message transaction protocol specification.
(Internet) Network Working Group, Request for Comments RFC1015, April
1993.

B. J. Dempsey. Retransmisson-Based Error Control For Continuous Media
Traffic in Packe-Switched Networks. PhD thesis, University of Virginia,
1991.

F. Gong and G. Parulkar. An application-oriented error control scheme for
high-speed networks. Technical Report WUCS-92-37, Department of
Computer Science, Washington University in St. Louis, November 1992.

L. Lamport. Time, clocks and the ordering of eventsin a distributed system.
CACM, 21(7):558-565, July 1978.

36

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. Neiger and S. Toueg. Substituing for real time and common knowledgein
asynchronous distributed systems. In Proc 4" Symp on Principles of
Distributed Computing, pages 281-293, 1987.

L. Peterson, N. Buchholz, and R. Schlighting. Preserving and using context
information in interprocess communication. ACM Trans on Computer
Systems, 7(3):217-218, August 1989.

T. F. LaPortaand M. Schwartz. The multistream protocol: A highly flexible
high-speed transport protocol. |IEEE Journal on Seded Areasin
Comnunications, 11(1):519-530, May 1993.

E. Golden. TRUMP: Timed-Reliahility Unordered Message Protocol. MS
Thes's, CIS Dept., University of Delaware, 1997.

P. T. Conrad. Order, Reliability, and §nchronizationin Transport Layer
Protocols for Multimedia Document Retrieval. PhD Dissertation, CIS Dept.,
University of Delaware, (in progress).

S. Iren, P. D. Amer, A. Caro, P. T. Conrad, G. Sezen, and M. Taube.
Network-conscious compressed image transmission over battlefield networks.
In Advanced Telecomrunications/Information Distribution Research
Program Annud Conference, College Park, MD, February 1998.

P. D. Amer, C. Chassot, T. J. Connolly, M. Diaz, and P. T. Conrad. Partia
order transport service for multimedia and other applications. IEEEACM
Trans on Networking, 2(5):440-456, October 1994.

T. Connolly, P. D. Amer, and P. T. Conrad. An extension to TCP: Partial
order service. Request for Comments (Experimental) RFC 1693, Internet
Engineering Task Force, November 1994.

P. T. Conrad, P. D. Amer, E. Golden, S. Iren, R. Maradli, and A. Caro.
Transport QoS over unreliable networks: No guarantees, no free lunch! In
IFIP Fifth Internationd Workshop onQuality of Service (IWQOS’98), New
York, NY, USA, May 1997.

R. Maradli, P. D. Amer, and P. T. Conrad. Retransmission-based partialy
reliable services: An analytic model. In IEEEINFOCOM, San Fransisco,
California, March 1996.

R. Maradli, P. D. Amer, P. T. Conrad, and G. Burch. Partial order transport
service: An analytic model. In Ninth Annud IEEE Workshop oncomputer
Comnunications, Marathon, Florida, October 1991.

37

[32] R. Maradli. Partially Ordered and Partially Reliable Transport Protocols:
Performance Analysis. PhD thesis, CIS Dept., University of Delaware, 1997.

[33] J. A.Rody and A. Karmouch. A remote presentation agent for multimedia
databases. In Proceedings of the International Conference on Multimedia
Computing and Systems, pages 223-230, Washington, DC, May 1995. |EEE.

[34] W.R. Stevens. UNIX Network Programming. Prentice-Hall, 1990.

38

