
1

Retransmission Policies
for Multihomed Transport Protocols

Armando L. Caro, Jr.* Paul D. Amer Randall R. Stewart

Internetwork Research Department Protocol Engineering Lab Internet Technologies Division

BBN Technologies University of Delaware Cisco Systems

acaro@bbn.com amer@cis.udel.edu rrs@cisco.com

Abstract— We evaluate three retransmission policies for trans-
port protocols that support multihoming (e.g., SCTP). The
policies dictate whether retransmissions are sent to the same
peer IP address as the original transmission, or sent to an
alternate peer IP address. Each policy presents tradeoffs based
on the paths’ bandwidth, delay, loss rate, and IP destination
reachability. We find that sending all retransmissions to an
alternate peer IP address is useful when the primary IP address
becomes unreachable, but often degrades performance in non-
failure scenarios. On the other hand, sending all retransmissions
to the same peer IP address as the original transmission reverses
the tradeoffs. We balance the tradeoffs by proposing a hybrid
policy that sends fast retransmissions to the same peer IP address
as the original transmission, and sends timeout retransmissions to
an alternate peer IP address. We show that even with extensions
which we proposed to improve the policies’ performance, the
hybrid policy is the best performing policy in failure and non-
failure scenarios.

I. I NTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network
interfaces. Multihoming can be expected to be the rule rather
than the exception in the near future as cheaper network
interfaces and Internet access motivate content providersto
have simultaneous connectivity through multiple ISPs, and
more home users install wired and wireless connections for
added flexibility and fault tolerance. Furthermore, wireless
devices may be simultaneously connected through multiple
access technologies, such as wireless LANs (e.g., 802.11) and
cellular networks (e.g., GPRS, CDMA).

The current transport protocol workhorses, TCP and UDP,
do not support multihoming; TCP allows binding to only one
network address at each end of a connection. When TCP was
designed, network interfaces were expensive components, and
hence multihoming was beyond the ken of research.

Two recent transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [9], [23] and the Datagram

*This research results from the first author’s PhD dissertation while with
the Protocol Engineering Lab, CIS Department, University ofDelaware.

Prepared through collaborative participation in the Communications and
Networks Consortium sponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Supported in part by the University Research Program of Cisco Systems,
Inc.

Congestion Control Protocol (DCCP) [18] support multihom-
ing at the transport layer. The motivation for multihoming in
DCCP is mobility [17], while SCTP is driven by a broader and
more generic application base – fault tolerance. We use SCTP
in our experiments primarily because of its relative maturity
and our focus on fault tolerance, but we believe the results and
conclusions presented in this paper apply in general to reliable
SACK-based transport protocols that support multihoming.

SCTP allows binding of one transport layerassociation
(SCTP’s term for a connection) to multiple IP addresses at
each end of the association. SCTP’sn to m binding allows
a multihomed sender withn interfaces to send to any of a
multihomed receiver’sm destination addresses. For example,
an SCTP multihomed association between hostsA and B

in Figure 1 could be bound to both IP addresses at each
host: ({A1, A2}, {B1, B2}). Such an association allows data
transmission from hostA to hostB to be sent to eitherB1 or
B2.

Host A

A1

A2

Host B

B1

B2

Internet
ISP

ISP

ISP

ISP

Fig. 1. Example multihoming topology

Currently, SCTP uses multihoming for fault tolerance pur-
poses only, and not for concurrent multipath transfer [14].
Each endpoint chooses a single peer IP address as the pri-
mary destination address to transmit new data during normal
transmission. If the primary destination address becomes un-
reachable, the SCTP sender detects the failure, andfails over to
using an alternate destination address without requiring action
by the user or application layer.

When data is lost, a sender uses an alternate destination
address for retransmissions. SCTP’s current retransmission
policy [23] states that “when its peer is multihomed, an end-
point SHOULD try to retransmit [data] to an active destination
transport address that is different from the last destination
address to which the [data] was sent.” This policy, which
we refer to asAllRtxAlt (All Retransmissions to Alternate),
attempts to improve the chance of success by sending all
retransmissions to an alternate destination address [22].The

2

underlying assumption is that loss indicates either that the
network path to the primary destination is congested, or the
primary destination is unreachable. Thus, retransmittingto an
alternate destination might avoid yet another loss of the same
data.

We show that this policy actually degrades performance in
many circumstances. We explore two alternative retransmis-
sion policies and find that the best policy, for both failure
and non-failure scenarios, is to send (a) fast retransmissions
to the primary destination, and (b) timeout retransmissions
to an alternate destination. We show that this hybrid policy
performs best when combined with two enhancements: our
Multiple Fast Retransmit algorithm, and either timestamps
or our Heartbeat After RTO mechanism. The Multiple Fast
Retransmit algorithm reduces the number of timeouts. Times-
tamps and the Heartbeat After RTO mechanism both improve
performance when timeouts are common by providing extra
RTT measurements and maintaining low RTO values.

This paper combines and extends results published by
the authors in three incremental conference publications [5]–
[7], thereby documenting the complete development of this
research. Section II demonstrates the problem with SCTP’s
current retransmission policy (AllRtxAlt) by comparing it
to an alternative policy,AllRtxSame (All Retransmissions to
Same). Section III introduces and evaluates a third hybrid
policy, FrSameRtoAlt (Fast Retransmissions to Same, Timeouts
to Alternate), which attempts to balance the tradeoffs between
AllRtxAlt and AllRtxSame. Section IV introduces and eval-
uates three extensions to further improve the performance of
the three policies. Section V compares the policies’ perfor-
mance with their best extensions in non-failure scenarios,and
Section VI compares them in failure scenarios. Section VII
concludes the paper.

II. A LL RTXALT ’ S PROBLEM

AllRtxAlt is the retransmission policy currently specifiedfor
SCTP in RFC2960. This policy attempts to bypass transient
network congestion and path failures by sending all retrans-
missions to an alternate destination. Intuitively, we would
expect that sending retransmissions to an alternate path would
be beneficial, particularly when the alternate path’s quality is
better (i.e., higher bandwidth, lower delay, and/or lower loss).
Similarly, when the alternate path’s quality is worse, we expect
sending retransmissions to the same destination as their orig-
inal transmission should provide better performance. To test
these hypotheses, we evaluate the performance of AllRtxAlt
and the AllRtxSame policy – send all retransmissions to the
same destination as their original transmission [6].

A. Analysis Methodology

We evaluate the retransmission policies using University of
Delaware’s SCTP module [8] for the ns-2 network simula-
tor [3]. Figure 2 illustrates the network topology simulated:
a dual-dumbbell topology whose core links have a bandwidth
of 10Mbps and a one-way propagation delay of 25ms. Each
router, R, is attached to five edge nodes. One of these five
nodes is a dual-homed node for an SCTP endpoint, while the

other four are single-homed and introduce cross-traffic that
creates loss for the SCTP traffic.

The links to the dual-homed nodes have a bandwidth of
100Mbps and a one-way propagation delay of 10ms. The
single-homed nodes also have 100Mbps links, but their propa-
gation delays are randomly chosen from a uniform distribution
between 5-20ms. The end-to-end one-way propagation delays
range between 35-65ms. These delays roughly approximate
reasonable Internet delays for distances such as coast-to-coast
of the continental US, and eastern US to/from western Europe.
Also, each link (both edge and core) has a buffer size twice
the link’s bandwidth-delay product.

R

R

R

R

10Mbps 25ms

10Mbps 25ms

100Mbps 5-20ms

100M
bps 5-20ms

100Mbps 5-20ms

100Mbps 5-20ms

P1 P2 P8

P1 P2 P8

SCTP
Sender

P1 P2 P8

P2 P8

SCTP
Receiver

A

1

2

3

4

1

2

3

4

B

1

2

3

4

1

2

3

4

P1

Pr imary

Alternate

100M
bps 10ms

10
0M

bp
s

10
ms 100M

bps 10ms

100M
bps

 1
0m

s

Fig. 2. Simulation network topology with cross-traffic, congestion-based
loss, and no failures

Our configuration has two SCTP endpoints (senderA,
receiverB) on either side of the network, which are attached to
the dual-homed edge nodes.A has two paths, labeled primary
and alternate, toB. Each single-homed edge node has eight
traffic generators (labeledP1 − P8), each introducing cross-
traffic based on a Pareto distribution. The cross-traffic packet
sizes are chosen toroughly resemble the distribution found on
the Internet: 50% are 44 bytes, 25% are 576 bytes, and 25%
are 1500 bytes [1], [10]. The aim is to simulate an SCTP data
transfer over a network with self-similar cross-traffic, which
resembles the observed nature of traffic on data networks [20].

We simulate a 4MB file transfer with different network
conditions, controlled by varying the load introduced by cross-
traffic. All loss experienced is due to congestion at the routers;
no loss is due to bit errors. The aggregate levels of cross-
traffic on each path range from 5Mbps to 11Mbps. Although
we independently control the levels of cross-traffic on each
of the core links, the controls for the cross-traffic on each
forward-return path pair are set the same. Each simulation has
three parameters:

1) level of cross-traffic (in Mbps) on the primary path
2) level of cross-traffic (in Mbps) on the alternate path
3) AllRtxAlt vs AllRtxSame policy

3

B. Results

We compare the transfer times using AllRtxAlt versus
AllRtxSame under various loss rates, with all else being equal
(bandwidth, delay, etc). Since loss in our simulations only
occurs due to congestion, we do not set the loss rate. Instead,
we calculate the observed loss rate for a transfer after the
simulation has completed. The loss rate is calculated as the
number of SCTP packets dropped divided by the number of
SCTP packets transmitted.

We collected results for 0-10% loss on the primary and
alternate paths, but due to space constraints in this paper,we
do not include all results (more detailed results appear in [4]).
Figure 3 presents the results for transfers with{3, 5, 8}%
primary path loss. The graphs compare the file transfer time
using AllRtxAlt versus AllRtxSame at various loss rates on
the alternate path. Without failures, AllRtxSame never uses
the alternate path, and therefore is unaffected by the alternate
path’s loss rate. Thus, AllRtxSame’s transfer times are rep-
resented as a band parallel to thex-axis. This band outlines
the upper and lower bounds of the 90% confidence interval.
For example, we are 90% confident that the average 4MB file
transfer time at 3% primary path loss lies between 34.3 and
35.1 seconds.

AllRtxAlt’s transfer times are grouped by ranges of alternate
path loss rates. The graph depicts the mean and the 90% con-
fidence interval for each of these groups. The 90% confidence
interval is calculated using an acceptable error of 10% of the
mean. That is, we ran enough simulations to estimate the mean
and 90% confidence interval with an acceptable error of at
most 10% of the mean. For example, when the primary path’s
loss rate is 3% and the alternate path’s loss rate is 1.5-2.5%,
the 4MB file transfer time is on average 42.8 seconds with a
90% confidence interval between 41.1 and 44.5 seconds.

The graphs show that for{3, 5}% primary path loss, All-
RtxSame outperforms AllRtxAlt for all alternate path loss
rates (except 0%). Even when the alternate path’s loss rate
is better (i.e., lower) than the primary’s, retransmittingon the
alternate path degrades performance. This trend remains for all
loss rates. Consider the results for 8% primary path loss. The
anticipated benefits of AllRtxAlt only appear for alternatepath
loss rates of 0-3%. In other words, even if the alternate path’s
loss rate is up to 3% better (5-8%), it is better to retransmit
data on the primary path with its an 8% loss rate. Clearly,
this behavior is not what the SCTP authors expected when
specifying the current retransmission policy.

Intuition tells us that when an alternate path’s conditionsare
better than the primary’s, then AllRtxAlt should improve per-
formance, and when the conditions are worse on the alternate
path, then AllRtxAlt should degrade performance. However,
our results show that often the former expectation does not
hold. Furthermore, independent results by other researchers
confirm that AllRtxAlt degrades performance [11].

C. Stale RTOs

Following analysis of several experiment traces, we attribute
AllRtxAlt’s poor performance to stale RTO values for the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Paths Loss Rate (%)

Primary Path Loss Rate: 3%

AllRtxAlt
AllRtxSame

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Paths Loss Rate (%)

Primary Path Loss Rate: 5%

AllRtxAlt
AllRtxSame

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Paths Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt
AllRtxSame

Fig. 3. AllRtxAlt vs AllRtxSame at{3, 5, 8}% primary path loss

4

alternate path. Due to Karn’s algorithm [16], successful re-
transmissions on the alternate path cannot be used to update
the RTT estimation of the alternate path. Timeouts on retrans-
missions, however, exponentially increase the RTO. The only
traffic on the alternate path which updates the RTT estimate
are the periodic heartbeat probes used to determine destination
reachability, but these heartbeats are transmitted relatively
infrequently (approximately every 30 seconds [23]). In many
cases the RTO is exponentially increased more frequently than
it can be reduced by an RTT estimate. The result is an overly
conservative (i.e., too large) RTO on the alternate path forthe
majority of the association. Thus, anytime a retransmission on
the alternate path is lost, a timeout occurs and the timeout
is likely to be unnecessarily long. In addition, each timeout
further contributes to the problem by doubling the RTO value.

Figure 4 illustrates the dynamics of the RTO values for
the primary path (8% loss rate) and the alternate path (5%
loss rate) during a 4MB file transfer using AllRtxAlt. This
specific transfer sent a total of 2,889 original transmissions
on the primary path, of which 229 had to be retransmitted on
the alternate path, and of those retransmissions, 14 were lost
and re-retransmitted on the primary path. The RTO value of
the primary path stays relatively low (average is 2.3 seconds)
during most of the transfer, because successful new data
transmission on the primary path updates the RTT estimation
and reduces the RTO value (most likely back to the minimum
of 1 second). On the other hand, the alternate path with a
lower loss rate maintains an average RTO value of 5.9 seconds
– more than double the primary’s. Figure 4’s graph for the
alternate path shows that the alternate path’s RTO reduces
only three times. In other words, only three heartbeats are
successfully acked and used to measure the alternate path’s
RTT. The graph also shows seven timeouts exponentially
increasing the RTO value of the alternate path.

III. B ALANCING THE TRADEOFFS

We have demonstrated the tradeoffs between AllRtxAlt
and AllRtxSame. AllRtxSame generally provides better per-
formance, but AllRtxAlt may improve performance if the
alternate path’s loss rate is low enough to overcome the
stale RTO problem. The difficulty in practice is that a sender
generally has no prior knowledge about the paths’ conditions.
Without such information, the best a sender can do is balance
the tradeoffs. To do so, we introduce the FrSameRtoAlt policy
– a hybrid of AllRtxAlt and AllRtxSame. FrSameRtoAlt sends
(a) fast retransmissions to the same destination as their original
transmissions, and (b) timeout retransmissions to an alternate
destination [7]. Since timeouts tend to occur more often at
higher loss rates, this policy increases the use of the alternate
path as the primary path’s loss rate increases. This section
evaluates FrSameRtoAlt against AllRtxAlt and AllRtSame.
We determine whether FrSameRtoAlt does indeed balance the
tradeoffs between the other two policies.

A. Analysis Methodology

Figure 5 illustrates the network topology used, which is
based on the topology previously presented in Figure 2. But

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

R
T

O
 (

se
c)

Time (sec)

Primary Path (8% Loss Rate)

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

R
T

O
 (

se
c)

Time (sec)

Alternate Path (5% Loss Rate)

Fig. 4. Example RTO dynamics with 8% primary path loss and 5% alternate
path loss

instead of using cross-traffic to induce congestion-based loss,
we introduce uniform loss on these paths (0-10% each way) at
the core links. We realize that the cross-traffic approach used
in Figure 2 is a more realistic approach, but the simulation time
for this technique became impractical. To evaluate if Figure 5’s
simplified model could still provide meaningful results, we
compared representative simulations using the cross-traffic
model from Figure 2 and the simpler uniform loss model
from Figure 5. Although the absolute results differed for those
examples compared, relative relationships remained consistent
– leading to the same conclusions. We therefore proceeded
with the simpler uniform loss model.

The topology in Figure 5 maintains the same link band-
widths and delays used in Figure 2. The core links have
10Mbps bandwidth and 25ms one-way delay, and the edge
links have 100Mbps bandwidth and 10ms one-way delay.
Thus, the end-to-end one-way delay on either path is 45ms,
which is a reasonable delay within the continental US.

We simulate a 4MB file transfer with three input parameters
for each simulation: (1) the primary path’s loss rate, (2) the
alternate path’s loss rate, and (3) one of the three retransmis-
sion policies. Each parameter set is simulated with 60 different
seeds.

5

0 – 10 % loss

Sender Receiver
R

R

R

R

10
0M

bp
s

10m
s

100Mbps10ms

10
0M

bp
s

10
ms

10Mbps, 25 ms
0 – 10 % loss

10Mbps, 25 ms

A 100Mbps
10ms

B

Alternate

Primary

Fig. 5. Simulation network topology with random loss

B. Results

Figure 6 illustrates the results for{3, 5, 8}% primary path
loss rates. For each graph in Figure 6, the alternate path’s
loss rate is varied on thex-axis, ranging from 0-10%. The
graphs in Figure 6 compare the average transfer time of a 4MB
file using one of the three policies: AllRtxAlt, AllRtxSame,
FrSameRtoAlt.

We ensure statistical confidence by calculating the 90%
confidence interval with an acceptable error of 10% of the
mean. The 90% confidence intervals are not shown in the
graphs for clarity. These intervals vary for different lossrates
and retransmission policies, but on average the 90% confidence
interval is about +/- 2-5 seconds around the mean. The largest
90% confidence interval is about +/- 13 seconds around the
mean; as expected, larger confidence intervals tend to occur
for higher loss rates and policies that use the alternate path
more often.

Figure 6 clearly shows, as expected, that AllRtxSame’s
performance is uninfluenced by the alternate path’s loss rate or
by the stale RTO problem. Following the same trends observed
in Section II-B, the graphs in Figure 6 also show that AllRtxAlt
may improve performance when the alternate path’s loss rateis
lower than the primary’s, but the stale RTO problem dominates
performance. First, AllRtxAlt does worse than AllRtxSame
when both paths have the same bandwidth, delay, and loss
rate. Second, AllRtxAlt degrades performance more often than
it improves performance, and the degree to which AllRtxAlt
degrades performance is significantly higher than the degree
to which it improves performance. For example, when the
primary path loss rate is 5%, AllRtxAlt improves performance
over AllRtxSame by 21% when the alternate path loss rate is
0%, but degrades performance by more than double (108%)
when the alternate path loss rate is 10%.

FrSameRtoAlt, a hybrid policy, compromises between the
advantages and disadvantages of AllRtxAlt and AllRtxSame.
At low primary path loss rates (e.g., top graph in Figure 6),
FrSameRtoAlt and AllRtxSame perform similarly. Most lost
packets at such loss rates are detected by the fast retransmit
algorithm, and thus are retransmitted to the same destination.
The relatively few timeouts that occur in these conditions are
not enough to significantly influence the results.

As the primary path loss rate increases, AllRtxSame and
FrSameRtoAlt begin to perform differently. An increase in
the number of timeouts causes FrSameRtoAlt to send more

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt AllRtxSame FrSameRtoAlt

Fig. 6. AllRtxAlt, AllRtxSame, and FrSameRtoAlt at{3, 5, 8}% primary
path loss

6

traffic to the alternate destination. As a result, FrSameRtoAlt’s
performance depends more on the alternate path’s loss rate.
However, since FrSameRtoAlt does not send fast retransmis-
sions to the alternate destination, the alternate path’s loss rate
influences FrSameRtoAlt’s performance less than AllRtxAlt’s.
FrSameRtoAlt’s improvements are not as great as AllRtxAlt’s,
but neither are the degradations. Furthermore, FrSameRtoAlt
improves performance to a greater extent than it degrades
performance. For example, when the primary path loss rate
is 8%, FrSameRtoAlt improves performance over AllRtxSame
by 13% when the alternate path loss rate is 0%, but degrades
performance by only 3% when the alternate path loss rate is
10%. To contrast, AllRtxAlt offers a 36% improvement and
68% degradation under the same conditions.

Since loss conditions of paths are unknowna priori, we
need to consider overall performance. From the results in
this section, we conclude that AllRtxAlt is the worst policy.
AllRtxSame and FrSameRtoAlt perform about the same with
FrSameRtoAlt offering a slight advantage when primary path
loss rates are high.

IV. PERFORMANCEENHANCING EXTENSIONS

We now introduce three performance enhancing policy
extensions. The motivation behind these extensions is to deter-
mine if the relative relationships between the retransmission
policies remain unchanged even after improving each of one’s
performance.

A. Heartbeat After RTO (HAR)

When a timeout occurs, the Heartbeat After RTO (HAR)
mechanism sends a heartbeat immediately to the destinationon
which a timeout occurred. This behavior is in addition to the
normal data retransmission behavior (specified by the retrans-
mission policy) that remains unchanged. Since AllRtxSame
sends timeout retransmissions to the same destination, HARis
not applicable (see Figure 7). The extra heartbeats introduced
by HAR try to alleviate the stale RTO problem of AllRtxAlt
and FrSameRtoAlt. With HAR, a sender updates an alternate
destination’s RTT estimate more frequently, thus resulting in
a better RTT estimate on which to base the RTO value [5].

For example, suppose a packet is lost in transit to the
primary destination, and later gets retransmitted to an alternate
destination. Also suppose that the retransmission times out.
The lost packet is retransmitted again to yet another alternate
destination (if one exists; otherwise, the primary). More im-
portantly, a heartbeat is also sent to the alternate destination
which timed out. If the heartbeat is successfully acked, that
destination acquires an additional RTT measurement to help
reduce its recently doubled RTO.

B. Timestamps (TS)

The timestamp (TS) mechanism is similar to TCP’s times-
tamp mechanism. By including timestamps in each packet,
the retransmission ambiguity problem is resolved. That is,the
sender can distinguish between acks for original transmissions
and acks for retransmissions. Thus, Karn’s algorithm can be

eliminated, and successful retransmissions can be used to
update the RTT estimate and maintain a more accurate RTO
value. This feature is especially useful in alleviating thestale
RTO problem of AllRtxAlt and FrSameRtoAlt [5].

Note that this extension’s motivation is to evaluate how
much performance can be improved by eliminating the retrans-
mission ambiguity problem. One alternative solution, incurring
less packet overhead, may be to use flag(s) in the data and
sack headers to signal whether the data/sack is for an original
transmission or retransmission.

C. Multiple Fast Retransmit (MFR)

The Multiple Fast Retransmit (MFR) algorithm introduces
extra state at the sender to allow lost fast retransmissionsto
be fast retransmitted again instead of incurring a timeout.For
example, suppose a sender has a window of data in flight to the
receiver, and packetx is lost. Data successfully received at the
receiver are sacked, and any sacks for packets sent afterx serve
as missing reports for packetx. When the sender receives four
such missing reports, the standard fast retransmit algorithm is
triggered and packetx is retransmitted.1 At this point, MFR
state stores the highest packet currently outstanding,n. This
way, if the retransmission ofx is also lost, the sender can
detect the loss with another four missing reports. However,
this time only sacks for packets greater thann can serve as
missing reports, because the sacks up ton were already in
flight whenx was fast retransmitted the first time [5].

MFR applies to AllRtxSame and FrSameRtoAlt. Since
AllRtxAlt sends fast retransmissions to an alternate path,MFR
could cause spurious fast retransmissions when path delays
are different. For example, imagine a fast retransmission
scenario where the primary path’s RTT is shorter than the
alternate path’s. After a fast retransmission is sent on the
alternate path, new data sent on the primary path may arrive
at the receiver first. If so, the receiver uses sacks to convey
this reordering to the sender. However, the sender’s MFR
algorithm will mistakenly interpret the reordering as lossof
the fast retransmitted data, and incorrectly trigger another fast
retransmission of the same data.

Although MFR prevents some timeouts, it does not provide
additional RTT samples for alternate destinations, and thus
inevitable timeouts continue to suffer from the stale RTO
problem. MFR may be combined with HAR or timestamps to
address stale RTOs. Figure 7 illustrates all ten policy-extension
combinations.

D. Performance Evaluation

This section independently examines each policy, with its
possible extensions. We determine which extension(s) provides
the best improvement to each policy. For our evaluation, we
use the methodology presented in Section III-A.

1SCTP [23] requires four missing reports to trigger a fast retransmit,
whereas TCP requires only three analogous dupacks [2].

7

99999FrSameRtoAlt

999AllRtxSame

99AllRtxAlt

MFR
+

TS

MFR
+

HAR
MFRTSHAR

Rtx
Policy

Policy Extension(s)

Fig. 7. Possible policy-extension combinations

1) AllRtxAlt’s Extensions: Figure 8 presents the results for
AllRtxAlt and its extensions with{3, 5, 8}% primary path
loss rates. As the graphs show, both the Heartbeat After RTO
(HAR) and Timestamps (TS) extensions drastically improve
AllRtxAlt’s performance. HAR improves performance by as
much as 38%, 43%, and 45% for primary path loss rates of
3%, 5%, and 8%, respectively. TS improves performance by
slightly larger margins – as much as 45%, 51%, and 50%.

Both HAR and TS provide more RTT measurements of
the alternate destination and reduce the occurrence of stale
RTOs. Since HAR is a reactive mechanism that only obtains an
extra measurement when timeouts occur, TS has an advantage
of HAR. TS is proactive and offers more opportunities to
measure the alternate path’s RTT. Although TS adds a 12-byte
overhead into each packet, the overhead does not adversely
impact performance. We conclude TS is the better extension
for AllRtxAlt.

2) AllRtxSame’s Extensions: Figure 9 presents the results
for AllRtxSame and its extensions. Since AllRtxSame’s per-
formance is independent of the alternate path’s conditions, we
plot all the results in a single graph with the primary path’s
loss rate on thex-axis.

The graph shows that the Multiple Fast Retransmit (MFR)
extension is able to avoid timeouts and increase AllRtxSame’s
performance. For example, MFR improves AllRtxSame’s per-
formance by 8%, 10%, and 11% under 3%, 5%, and 8%
primary path loss rates. TS only improves performance when
the primary path’s loss rate is high. For example, includingTS
improves performance by 6-8% when the primary path’s loss
rate is 8%, but provides no benefit at 3% and 5% primary path
loss. At high loss rates, timeouts may occur frequently enough
that no RTT measurement is obtained between timeouts. Thus,
TS improves performance by allowing a successful timeout
retransmission to be used for measuring the RTT, which in
turn decreases the exponentially backed-off RTO. Combining
MFR and TS provides the best performance for AllRtxSame.

3) FrSameRtoAlt’s Extensions: FrSameRtoAlt qualifies for
five extension combinations, three of which include the Mul-
tiple Fast Retransmit (MFR) extension. Figure 10 shows that
individually, MFR provides greater improvement than either
the Heartbeat After RTO (HAR) or Timestamps (TS) exten-
siosn. Using HAR or TS alone, at best, provides 2%, 5%,
and 9% improvement at 3%, 5%, and 8% primary path loss,
respectively. MFR alone, on the other hand, improves perfor-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt AllRtxAlt + HAR AllRtxAlt + TS

Fig. 8. AllRtxAlt and its extensions at{3, 5, 8}% primary path loss

8

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Primary Path Loss Rate (%)
AllRtxSame
AllRtxSame + TS

AllRtxSame + MFR
AllRtxSame + MFR + TS

Fig. 9. AllRtxSame and its extensions across all primary path loss rates

mance by as much as 10%, 16%, and 14%. MFR’s ability to
avoid some timeouts has dramatic effects on FrSameRtoAlt’s
performance, because the stale RTO problem on the alternate
path is also avoided.

Combining HAR or TS with MFR in general provides
no added improvement; some marginal improvement occurs
when the loss rate is high on the primary and alternate
paths. For example, with 8% primary path loss and 10%
alternate path loss, MFR+HAR and MFR+TS perform sim-
ilarly and provide an additional 4-5% improvement over MFR
alone. Thus, FrSameRtoAlt performs best when combined
with either MFR+HAR or MFR+TS. However, we recommend
that MFR+TS be used, since TS (or any mechanism that
eliminates the retransmission ambiguity) has other orthogonal
applications, such as the Eifel algorithm [19], [21].

V. NON-FAILURE SCENARIOS

This section revisits our performance comparison of the
three policies in non-failure scenarios, but this time eachpolicy
is combined with our recommended extension(s):

• AllRtxAlt with Timestamps (AllRtxAlt+TS)
• AllRtxSame with Multiple Fast Retransmit and Times-

tamps (AllRtxSame+MFR+TS)
• FrSameRtoAlt with Multiple Fast Retransmit and Times-

tamps (FrSameRtoAlt+MFR+TS)
First, we evaluate their performance when both the primary
and alternate paths have equal RTTs. Then, we assess the
influence of the alternate path’s delay. Finally, we consider
three paths to determine if relative performance of the re-
transmission policies is influenced by the degree of mul-
tihoming. For readability throughout the remainder of this
paper, we refer to AllRtxAlt+TS, AllRtxSame+MFR+TS, and
FrSameRtoAlt+MFR+TS as simply AllRtxAlt, AllRtxSame,
and FrSameRtoAlt, respectively.

A. Analysis Methodology

We again use the methodology presented in Section III-
A for our evaluation, but in this section we investigate
alternate path RTTs. The primary path remains unchanged

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

FrSameRtoAlt
FrSameRtoAlt + HAR
FrSameRtoAlt + TS

FrSameRtoAlt + MFR
FrSameRtoAlt + MFR + HAR
FrSameRtoAlt + MFR + TS

Fig. 10. FrSameRtoAlt with its extensions at{3, 5, 8}% primary path loss

9

(see Figure 11). However, the alternate path’s core link has
three possible one-way delays: 25ms, 85ms, and 500ms (i.e.,
end-to-end RTTs of 90ms, 210ms, and 1040ms). These val-
ues sample reasonable RTTs experienced on the Internet.
Although 1040ms may seem large, flows passing through
cellular networks often experience RTTs as high as 1 or more
seconds [12], [13], [15].

0 – 10 % loss

Sender Receiver
R

R

R

R

10
0M

bp
s

10m
s

100Mbps10ms

10
0M

bp
s

10
ms

10Mbps, 25 ms
0 – 10 % loss

10Mbps, { 25,85,500} ms

A 100Mbps
10ms

B

Alternate

Primary

Fig. 11. Simulation network topology with random loss, 90ms primary path
RTT, and{90, 210, 1040}ms alternate path RTT

Note that we do not simulate different link bandwidths.
Lowering the alternate path’s bandwidth simply increases
the RTT, which we already independently control. Thus, the
bandwidths remain constant in all our simulations.

B. Symmetric Path Delays

Figure 12 illustrates the results for{3, 5, 8}% primary path
loss rates, a 90ms primary path RTT, and a 90ms alternate
path RTT. Our first observation is that the extensions reduced
the performance gap between the three retransmission policies
(compare Figure 12 with Figure 6). For 3% primary path loss,
the three policies perform relatively the same (less than 5%
difference) for 0-4% alternate path loss. Higher alternatepath
loss rates cause AllRtxAlt to degrade performance by as much
as 20%, while the results for AllRtxSame and FrSameRtoAlt
remain unchanged.

When the primary path loss rate is 5%, AllRtxSame and
FrSameRtoAlt again perform similarly. AllRtxAlt, on the other
hand, improves performance by as much as 10% and degrades
performance by as much as 14%, depending on the alternate
path’s loss rate (generally an unknown metric). Comparing
this relatively low degradation to the degradation of 108%
presented in Section III-B for the same network conditions,the
stale RTO problem seems to have been completely eliminated.

The results for 8% primary path loss further confirm this
observation. AllRtxAlt and FrSameRtoAlt outperform All-
RtxSame across nearly all alternate path loss rates, and do
about the same (within 2% of each other) when that alternate
path loss rate is higher than 8%.

Overall, the results in Figure 12 do not present a strong
argument for a single best policy. FrSameRtoAlt outperforms
AllRtxSame, but deciding between AllRtxAlt and FrSameR-
toAlt is not straight forward. FrSameRtoAlt provides only
conservative gains, but does not degrade performance at all.
AllRtxAlt may provide more significant gains, but risks the
potential of degradation of the same magnitude.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

Fig. 12. AllRtxAlt+TS, AllRtxSame+MFR+TS, and FrSameR-
toAlt+MFR+TS at {3, 5, 8}% primary path loss, 90ms primary path
RTT, and 90ms alternate path RTT

10

C. Asymmetric Path Delays

We find that increasing the alternate path’s RTT to slightly
more than double (210ms) does not significantly affect per-
formance. Although the results are not shown, the graphs are
similar to those in Figure 12. Hence, we push the limits further
and present the performance of a 1040ms alternate path RTT
in Figure 13.

The most obvious result is that AllRtxAlt’s heavy use of
the alternate path significantly degrades performance when
the alternate path delay is large (no surprise). AllRtxSame’s
performance remains unchanged, as expected. FrSameRtoAlt’s
results, however, prove interesting. At 3% primary path loss,
few timeouts occur. Hence, the alternate path is rarely usedand
FrSameRtoAlt’s results remain unchanged. With a 5% and 8%
primary path loss rate, FrSameRtoAlt degrades performance
compared to AllRtxSame, but given the large difference in path
delays, this degradation is minor. The alternate path’s delay is
more than ten times that of the primary, but in the worst case,
FrSameRtoAlt degrades performance by only 9% and 24% for
primary path loss rates of 5% and 8%, respectively.

D. Three Paths

To determine if our conclusions hold when the number of
paths between the endpoints increases, we add an additional
alternate path to the topology in Figure 11. We configure
both alternate paths to have the same properties (bandwidths,
delays, and loss rates). Otherwise, the number of simulation
parameters would quickly become unmanageable. The results
(not shown) are similar to those for two paths. That is, the
relationships between the policies remain the same. We expect
that the trends will remain the same for configurations with
more than three paths between endpoints.

VI. FAILURE SCENARIOS

We again evaluate the performance of the three policies
with their best performing extension(s), this time focusing on
failure scenarios, an important criteria in the overall evaluation.
After all, a key motivation for supporting multihoming at
the transport layer is improved failure resilience. Hence,a
multihomed transport layer should use a retransmission policy
that performs well when the primary destination becomes
unreachable.

A. Failover Algorithm

In our evaluation, we assume a failover algorithm similar
to that of SCTP. Each endpoint uses both implicit and explicit
probes to dynamically maintain knowledge about the reach-
ability of its peer’s IP addresses. Transmitted data serve as
implicit probes to a destination (generally, the primary desti-
nation), while explicit probes, calledheartbeats, periodically
test reachability and measure the RTT of idle destinations.
Each timeout (for data or heartbeats) on a particular destination
increments an error count for that destination. The error count
per destination is cleared whenever data or a heartbeat sentto
that destination is acked. A destination is marked as failed

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

Fig. 13. AllRtxAlt+TS, AllRtxSame+MFR, and FrSameRtoAlt+MFR+TS at
{3, 5, 8}% primary path loss, 90ms primary path RTT, and 1040ms alternate
path RTT

11

when its error countexceeds the failover threshold (called
Path.Max.Retrans in SCTP).

If the primary destination fails, the sender fails over to
an alternate destination address and continues probing the
primary destination with heartbeats. Failover is temporary
in that a sender resumes sending new data to the primary
destination if and when a future probe to the primary des-
tination is successfully acked. If more than one alternate
destination address exists, RFC2960 [23] leaves the alternate
destination selection method unspecified. We assume a round-
robin selection method.

RFC2960 [23] recommends default settings of: minimum
RTO = 1s, maximum RTO= 60s, and Path.Max.Retrans
(PMR) = 5. Using these defaults, the first timeout towards
failure detection takes 1sin the best case. Then, the exponen-
tial back-off procedure doubles the RTO on each subsequent
timeout towards failure detection. With PMR= 5, six con-
secutive timeouts are needed to detect failure, taking at least
1 + 2 + 4 + 8 + 16 + 32 = 63s. In the worst case, the first
timeout takes the maximum of 60s, and the failure detection
time requires6 ∗ 60 = 360s.

The failover details in this section are important for our
analysis of the retransmission policies’ performance in fail-
ure scenarios. However, we believe that the conclusions are
independent of the actual failure detection method and/or
parameters.

B. Analysis Methodology

We use the same methodology described in Section III-A,
but in this section we introduce failure scenarios. The topology
in Figure 14 shows that the both paths have the same charac-
teristics, except that the primary path’s core link experiences a
bi-directional failure. We simulate a link breakage between the
routers on the core path at two different times. The first set of
failure experiments experience the link breakage at time= 4s
into the transfer. With 0% loss on the primary path, about half
of the 4MB file transfer is complete by this time. The second
set’s link breakage occurs at time= 6.8s into the transfer,
specifically chosen to occur during the last RTT of the 4MB
file transfer when the primary path’s loss rate is 0%. In both
failure scenarios, the link remains down until the end of the
simulation.

0 – 10 % loss

Sender Receiver
R

R

R

R

10
0M

bp
s

10m
s

100Mbps10ms

10
0M

bp
s

10
ms

10Mbps, 25 ms
0 – 10 % loss

10Mbps, 25 ms

A 100Mbps
10ms

B

Alternate

Primary

Fig. 14. Simulation network topology with random loss, equaldelays, and
primary path failure

C. Results

To gauge the performance during failure scenarios, we not
only measure the file transfer time, we also consider the
timeliness of data. File transfer in a failure scenario can be
divided into three periods: (1) before failure, (2) during failure
detection, (3) after failover. The first period has been covered
in Section V.

The second period, failure detection, is important for both
file transfer time and data timeliness. Fast failover time im-
proves file transfer time, because the sender is able to resume
“normal” transmission more quickly. As expected, we find that
the failure detection time is similar for the three retransmission
policies.

The retransmission policy affects timeliness of data in that
it determines whether a transfer is blocked during the failure
detection process. AllRtxSame delivers no data to the peer
until the entire failure detection process completes and failover
occurs. For example, with 0% primary path loss, the sender
has 30 lost data packets outstanding when failure occurs in our
first failure scenario (link breakage at time= 4s). AllRtxAlt
and FrSameRtoAlt successfully retransmit these 30 packets
after the first timeout in the failure detection process, thus
delaying them by only 1s (or whatever the primary path’s RTO
is at that point). Furthermore, during each subsequent timeout
that contributes to failure detection, the sender successfully
retransmits one packet to the alternate destination. On theother
hand, with AllRtxSame the sender successfully retransmits
the initial 30 lost packets only after the failure detection
completes, delaying them by at least 63s! This delay may be
unacceptable to applications requiring timely data delivery.

During the third period, the sender has only one available
path for transmission in our simulations. (The results in
Section V apply to scenarios where more than one path are
available during the third period.) Figure 15 presents the final
transfer times for failure at time= 4s. As the graphs show,
the primary path’s loss rate has minimal influence on the file
transfer time. Comparing these results with those in Figure12
suggests that the third period has heaviest influence on file
transfer time. Since failure occurs relatively early in thefile
transfer, the remaining portion of the transfer is large enough
that its sole use of the alternate path is the most influential
factor on file transfer time. Even the policies themselves do
not provide much difference (at most 9%) in performance.
Since there is only one available path in the third period, all
three retransmission policies perform similarly, differing only
by the extensions used.

As a worst case example, the file transfer times for 0%
primary path loss and failure at time= 6.8s are shown in
Figure 16. Since this failure scenario has a link breakage
in the last RTT of the data transfer, the second period (i.e.,
failure detection) is the most influential factor on file transfer
time. Figure 16 shows that AllRtxSame’s blocking behavior
during failure detection has drastic effects on the results. The
file transfer with AllRtxSame takes about 70s to complete,
whereas it only takes about 8-18s (depending on the alternate
path’s loss rate) with AllRtxAlt and FrSameRtoAlt. The reason
is that AllRtxSame is unable to complete the transfer until

12

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 3%

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 5%

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 8%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

Fig. 15. AllRtxAlt+TS, AllRtxSame+MFR+TS, and FrSameR-
toAlt+MFR+TS with primary path failure at time= 4s

after failover occurs, but AllRtxAlt and FrSameRtoAlt are
able to finish the transfer during failure detection. Note that
this example indeed represents a worst case situation for
AllRtxSame, and was diabolically conceived.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

F
ile

 T
ra

ns
fe

r
T

im
e

(s
ec

)

Alternate Path Loss Rate (%)

Primary Path Loss Rate: 0%

AllRtxAlt + TS
AllRtxSame + MFR + TS

FrSameRtoAlt + MFR + TS

Fig. 16. AllRtxAlt+TS, AllRtxSame+MFR+TS, and FrSameR-
toAlt+MFR+TS with primary path failure at time= 6.8s

In summary, all three policies provide similar through-
put performance for large transfers during failure scenarios.
However, AllRtxSame’s blocking failure detection behavior
degrades performance if the failure coincidentally occursnear
the end of the transfer and/or data timeliness is important.
Hence, AllRtxAlt and FrSameRtoAlt are recommended for
failure scenarios.

VII. C ONCLUSION

We have evaluated three retransmission policies for mul-
tihomed transport protocols, using SCTP to demonstrate the
concepts. Withouta priori knowledge about the available
paths, a sender cannot have a static policy that decides
where to retransmit lost data and expect to guarantee the
best performance. Through simulation, we have measured and
demonstrated the tradeoffs of three policies in non-failure and
failure conditions. Our results show that the retransmission
policy which best balances the tradeoffs is (1) send fast
retransmissions to the same peer IP address as the original
transmission, and (2) send timeout retransmissions to an
alternate peer IP address. We have shown that this hybrid
policy performs best when combined with two enhancements:
our Multiple Fast Retransmit algorithm, and either timestamps
or our Heartbeat After RTO mechanism. The Multiple Fast
Retransmit algorithm reduces the number of timeouts. Times-
tamps and the Heartbeat After RTO mechanism both improve
performance when timeouts are common by providing extra
RTT measurements and maintaining low RTO values – an
important feature for alternate paths that are mostly idle.

ACKNOWLEDGEMENTS

The authors acknowledge Ryan Bickhart, Janardhan Iyen-
gar, Sourabh Ladha, and the anonymous reviewers for their
valuable comments and suggestions.

13

DISCLAIMER

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U. S. Government.

REFERENCES

[1] CAIDA: Packet Sizes and Sequencing, Mar 1998.
http://traffic.caida.org.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
RFC2581, IETF, April 1999.

[3] UC Berkeley, LBL, USC/ISI, and Xerox Parc. ns-2 documentation and
software, Version 2.27, January 2004.www.isi.edu/nsnam/ns.

[4] A. Caro. End-to-End Fault Tolerance Using Transport Layer Multihom-
ing. Phd dissertation, CIS Dept, University of Delaware, August 2005.

[5] A. Caro, P. Amer, J. Iyengar, and R. Stewart. Retransmission Policies
with Transport Layer Multihoming. InICON 2003, Sydney, Australia,
September 2003.

[6] A. Caro, P. Amer, and R. Stewart. Transport Layer Multihoming for
Fault Tolerance in FCS Networks. InMILCOM 2003, Boston, MA,
October 2003.

[7] A. Caro, P. Amer, and R. Stewart. Retransmission Schemes forEnd-to-
End Failover with Transport Layer Multihoming. InGLOBECOM 2004,
Dallas, TX, November 2004.

[8] A. Caro and J. Iyengar. ns-2 SCTP module.http://pel.cis.udel.edu.
[9] A. Caro, J. Iyengar, P. Amer, S. Ladha, G. Heinz, and K. Shah. SCTP: A

Proposed Standard for Robust Internet Data Transport.IEEE Computer,
36(11):56–63, November 2003.

[10] K. Claffy, G. Miller, and K. Thompson. The Nature of the Beast: Recent
Traffic Measurements from an Internet Backbone.INET 1998, April
1998.

[11] M. Duke, T. Henderson, P. Spagnolo, J. Kim, and G. Michael. Stream
Control Transport Protocol (SCTP) Performance Over the LandMobile
Satellite Channel. InMILCOM 2003, Boston, MA, October 2003.

[12] A. Gurtov, M. Passoja, O. Aalto, and M. Raitola. Multi-Layer Protocol
Tracing in a GPRS Network. InInternational Conference on Ubiquitous
Computing, September 2002.

[13] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov.
TCP over Second (2.5G) and Third (3G) Generation Wireless Networks.
RFC3481, February 2003.

[14] J. Iyengar, K. Shah, P. Amer, and R. Stewart. Concurrent Multipath
Transfer Using SCTP Multihoming. InSPECTS 2004, San Jose,
California, July 2004.

[15] R. Jayaram and I. Rhee. A Case for Delay-based Congestion Control
for CDMA 2.5G Networks. InInternational Conference on Ubiquitous
Computing, October 2003.

[16] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in
Reliable Transport Protocols. InACM SIGCOMM 1987, August 1987.

[17] E. Kohler. Datagram Congestion Control Protocol Mobility and
Multihoming. draft-kohler-dccp-mobility-00.txt, July 2004. (work in
progress).

[18] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). draft-ietf-dccp-spec-09.txt, November 2004. (work in
progress).

[19] S. Ladha, S. Baucke, R. Ludwig, and P. Amer. On Making SCTP
Robust to Spurious Retransmissions.ACM SIGCOMM Computer
Communication Review, 34(2):123–135, April 2004.

[20] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-similar
Nature of Ethernet Traffic. InACM SIGCOMM 1993, San Francisco,
CA, September 1993.

[21] R. Ludwig and R. Katz. The Eifel Algorithm: Making TCP Robust
Against Spurious Retransmissions.ACM Computer Communications
Review, 30(21):30–36, January 2000.

[22] R. Stewart and Q. Xie.Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison Wesley, New York, NY, 2001.

[23] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Trans-
mission Protocol. RFC2960, October 2000.

