
1

Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Transport Layer

The transport layer is the lowest of the layers in the ISO (International

Standards Organization) reference model responsible for end-to-end quality of service

(QoS) in a packet-switched network. Re-sequencing out-of-order data, recovery from

data loss, detecting and removing duplicates, and flow control/congestion avoidance

are among the typical functions of the transport layer. A QoS parameter of the

transport layer is what determines the level of service provided by each of these

functions.

Conrad et al. [1] explains that sometimes authors lump three QoS

parameters (loss, order, and duplication) together under the term “reliabilit y” , using

“reliable” to refer to a transport service where no messages are lost, delivered in a re-

arranged order, or duplicated. Transport QoS can be classified with greater precision

if “ reliabilit y” strictly refers to data loss, defining a reliable service as one that allows

no loss whatsoever. This more precise definition of reliabilit y makes it independent

from the QoS parameters: “order” and “duplication” . “Order” refers to the extent to

which the transmitted sequence of elements is preserved in delivery. An ordered

service delivers elements in the exact same order as transmitted, while an unordered

service makes no such guarantee about order. “Duplication” refers to whether or not

multiple copies of the same element may be delivered. A no-duplicates service

2

detects and discards any duplicates, while a maybe-duplicates service does not make

such a guarantee [2].

Flow control is the final QoS parameter of the transport layer. This

parameter refers to the effort put into avoiding network congestion by controlli ng the

flow of data during a connection. A flow-controlled service has a mechanism for

smoothing out the burstiness of data transmission, while a service that is not flowed-

controlled has no such mechanism [3].

1.2 Traditional Protocols

Today’s Internet provides a choice between two transport protocols: Unit

Datagram Protocol (UDP) [4] and Transmission Control Protocol (TCP) [5]. These

protocols present extremes in terms of QoS. UDP’s service is unordered, unreliable,

maybe-duplicates, and is not flow-controlled; TCP’s service is ordered, reliable, no-

duplicates, and is flow-controlled.

1.3 Internet Application Developer’s Dilemma

The QoS needed by different applications varies greatly, and the fact that

traditional protocols only provide the extremes creates a dilemma. Today’s

developers typically have three choices when designing an application for the Internet:

(1) use UDP, (2) use TCP, or (3) use UDP and build the additional needed transport

functionality as part of the application development effort. When an application has

to choose either UDP or TCP when neither is appropriate, negative consequences

result. If TCP is chosen for an application that does not require total order and/or full

reliabilit y, unnecessary delays in information delivery may result. If UDP is used to

transmit vital information, important data may be lost or misordered unless the

3

application incorporates the complexity to provide order and reliability. However,

designing and implementing an application specific transport protocol that correctly

handles retransmission and flow control may be a larger effort than designing and

implementing the application itself. Hence, applications need a flexible transport

service that allows applications to receive the QoS they require [6].

1.4 POCv2 as a Solution

A flexible transport service offering a partially-ordered, partially-

reliable (PO/PR) service is ideal for applications that need flexible control over the

ordering and reliability of individual elements [6]. Such a service is essential for

balancing various QoS parameters in different applications, while allowing to build

upon previous work rather than duplicating efforts. This approach is consistent with

Application Level Framing as proposed by Clark and Tennenhouse [7].

To address this need, the Protocol Engineering Lab (PEL) at University of

Delaware has developed and implemented a new transport protocol, Partial Order

Connection version 2 (POCv2), which provides a spectrum of PO/PR services.

Figure 1 illustrates the entire spectrum of PO/PR services available and shows where

UDP and TCP exist in the spectrum. POCv2 is a transport service ideal for

applications, such as multimedia applications, that need flexible control over the

ordering and reliability of individual elements. In addition, POCv2 offers an extra

feature that neither TCP nor UDP provide: a mechanism that facilitates coarse-

grained1 synchronization of multimedia elements [10].

1 Coarse grained synchronization (also called temporal alignment) refers to
synchronizing the start and end of elements with respect to one another. This can be
distinguished from fine-grained synchronization (also called stream synchronization)
which refers to keeping parallel streams synchronized with one another [8][9].

4

Figure 1: Spectrum of PO/PR Services

1.5 ReMDoR: POCv2’s Test System

ReMDoR (Remote Multimedia Document Retrieval) is a multimedia

document retrieval system that allows authors to specify synchronization requirements

and varying degrees of reliabilit y for its multimedia elements [11]. To test the

benefits of POCv2, ReMDoR was developed with POCv2 features in mind. ReMDoR

allows comparative testing between POCv2 and traditional protocols such as TCP and

UDP.

ReMDoR’s contribution to the field of Computer Science might seem

questionable since many systems now exist that allow authors to construct pre-

orchestrated multimedia documents. However, these existing systems are not

designed to transmit multimedia documents over the Internet and present them as they

partially reliable

unreliable partially ordered

reliable

unordered ordered

Partially-Ordered

Partially-Reliable

Services

UDP

TCP

5

arrive. ReMDoR is one of the first systems to transmit and present multimedia

documents over the Internet.

Anytime an application transmits and receives data over the Internet,

consideration must be given to the case of network errors. For Internet-oriented

multimedia applications, presenting the document correctly may become a more

serious problem as network conditions worsen. The PEL research group has proposed

that in such situations, it is appropriate to provide for “graceful degradation” of the

multimedia document presentation [6]. This approach recognizes that in most

multimedia documents, not all elements have equal importance or the same QoS

requirements; some elements are essential to the presentation, while others are “nice

to have”. To provide the reliabilit y and partial order (PO) requirements necessary,

ReMDoR incorporates reliabilit y and ordering of the individual elements directly into

the authoring of the documents; thus, the authoring stage can exploit POCv2 features

to insure the best possible document presentation regardless of network conditions.

ReMDoR’s client/server system is being rebuilt from the “ground up” to

improve performance, eff iciency, and future research and development capabiliti es.

Much of my work has contributed to the redesigning and rebuilding of ReMDoR,

which is now nearly complete. The completely rebuilt system will i n essence be the

second generation of ReMDoR, thus earning the name ReMDoR 2.0.2

2 All second generation system components that make up ReMDoR 2.0, such as the
server, browser, and PMSL language, are also labeled version 2.0. Likewise, any
reference to the first generation of ReMDoR or any component thereof will be
referred to as version 1.0.

6

The remainder of the thesis is structured as follows. Chapter 2 explains

the details of ReMDoR to give an understanding of what the system is and how it

works. Additions and modifications introduced in version 2.0 are presented.

Conclusions and future work are discussed in Chapter 3.

7

Chapter 2

ReMDoR

2.1 Architecture

The architecture of ReMDoR is depicted in Figure 2. ReMDoR consists

of a client browser and a PMTP (Prototype Multimedia Transport Protocol) server

that communicates over the Internet with similar interactions to that of Web browsers

and HTTP servers3. The user specifies the URL of a document to the browser, which

in turn initiates an Internet connection to the appropriate server. Once the connection

is established, the browser requests the document from the server, and the server

replies by sending the data for the requested document back to the browser. The

browser processes the incoming data as it arrives, thereby presenting the multimedia

document to the user.

The browser, however, is not responsible for delivery order and reliability

requirements of the document; in fact, the browser has no knowledge about such

requirements. The server communicates these requirements to the POCv2 transport

layer below, and from then on, the transport layers on both sides of the connection are

responsible for delivering the appropriate order and reliability requirements. If

ReMDoR is running over a traditional transport protocol, such as UDP or TCP, then

order and reliability requirements that are requested by the server are ignored; the

3 Table 1 at the end of the chapter outlines the division of work among the various
components of ReMDoR 2.0.

8

transport protocol will simply deliver the QoS that it is designed to provide:

unordered/unreliable (UDP), or ordered/reliable (TCP).

Figure 2: Architecture of ReMDoR 2.0

During the development of ReMDoR 2.0, the possibilit y of experimenting

over more than just UDP, TCP, and POCv2 arose. The PEL research group decided

to begin developing other innovative transport protocols in addition to POCv2. This

posed a problem; any time a new transport protocol would be introduced, ReMDoR

needed to add complex special case code to incorporate the different protocols’

PMFF
File

Internet

PMSL
Document

Text Editor
(vi, emacs)

POCv2
Transport Layer

PTPC
Compiler

Client (browser) Server

Offline
Processing

POCv2
Transport Layer

9

Application Programming Interfaces (APIs). To avoid adding code for new APIs

every time a transport protocol is developed, a Universal Transport Library (UTL)

was developed. With UTL, ReMDoR can simply use a common API wrapper to

access the various transport protocols available [11]. UTL puts ReMDoR in a position

to serve as an experimental application for all new transport layers that are offered by

UTL.

Although the basic model of interaction is similar to that used by the Web,

there are many differences. The next few sections will discuss these differences by

going into greater detail about the type of documents, the document specification

process, the server, and the client or browser.

2.2 Temporal Documents

Unlike static Web documents, ReMDoR documents are temporal; that is,

they play out over time. The documents are made of elements such as audio, still-

images, text, geometric shapes, pauses, interactions, and erase events (which remove

elements from the screen). During the authoring process, each element is assigned a

list of successors that may consist of any number of elements (it may even be empty).

Once the document is complete, there exists a logical order in which the multimedia

elements may be presented. This order can be represented as a directed acyclic graph

or a PO graph of all the elements, as shown in Figure 3.

2.3 Authoring ReMDoR Documents

There are two basic steps in authoring a ReMDoR document: (1) specify

the document, and (2) compile the document. The document is specified using the

Prototype Multimedia Specification Language (PMSL), which is presented in section

10

2.3.1. Once PMSL specification exists, it is compiled into the Prototype Multimedia

File Format (PMFF), which is the file format in which a server actually stores the

documents. The details of the compiler and the compilation process are explained in

section 2.3.2. Section 2.3.3 explains the purpose of the PMFF file and how it is

generated.

Figure 3: Example of PO Graph for a Multimedia Presentation

Add Oil

Change Air Fil ter

Continue

Check Oil

Car

Engine

Audio

C
a
r Arrow #1

Check
Oil

Arrow #2

Ch Filter

Arrow #3

Add Oil
Continue
Button

…

Stream Element (Multiple Packet Element)Block Element (One Packet Element)

11

2.3.1 Prototype Multimedia Specification Language (PMSL)

The present version of PMSL is the second version of the language.

PMSL 1.0 was developed by Phillip Conrad and Edward Golden in the PEL research

group. The PMSL syntax has been modified and new features have been added to the

language to ease document authoring and enhance system efficiency. Appendix A

presents the legal syntax of PMSL 2.0, which is backward compatible to allow the use

of existing documents already written in PMSL 1.0. The new features of PMSL 2.0

are represented in Appendix A, but will be explained more thoroughly as they come

up in the next few paragraphs.

A PMSL document specification is an ASCII description of a multimedia

document. PMSL documents consist of color definitions (colordefs), font definitions

(fontdefs), pen definitions (pendefs), text formatting definitions (txtformatdefs), and

multimedia elements (elements). Colordefs define and assign nicknames to colors that

can be used later in the document. They are optional as long as none of the elements

in the document need color settings. Fontdefs are similar to colordefs except that they

define fonts. Fontdefs are also optional unless a text element exists. Pendefs are pre-

structured combinations of variables (colors, fonts, and line widths) used by some

graphic elements to specify their attributes. Pendefs are optional in two cases: (1) if

the document does not contain any graphic elements that rely on these variables, and

(2) if documents are written in PMSL 1.0. Txtformatdefs are also pre-structured

combinations of variables that have been added in PMSL 2.0. Txtformatdefs allow

text formatting to be specified in text elements by simply referring to pre-set

variables; these variables are only available in PMSL 2.0 (left margin, right margin,

top margin, line spacing, and justification). Txtformatdefs are completely optional,

allowing an author the choice of either setting text formatting variables manually in

12

each text element definition, or setting them by referring to a txtformatdef. Pendefs

and txtformatdefs speed up authoring documents which repeatedly use a set of

variables in multiple elements; time is saved by setting the variables once in a

structure definition, and then referring to the structure in multiple elements.

Elements are the multimedia elements which comprise the presentation

itself. There are two kinds of elements: data elements, and control elements. Data

elements present either audio or visual data to the presentation; these type of elements

include: audio clips, still-images, text, and geometric shapes. Control elements,

however, do not present anything; they instead control the presentation and flow of

the data elements. Control elements include: pauses, interactions, and erase events

(which remove objects from the screen). Since the documents are temporal, the

elements require synchronization. Therefore, elements are organized into a PO which

defines the presentation synchronization and ordering requirements. In addition,

PMSL allows an author to define a reliability class for each element.

Other than pendefs and txtformatdefs, two more features have been added

in PMSL 2.0. In PMSL 1.0, text was awkward to specify. Each line of text had to be

placed in a separate element with redundant color, font, and coordinates. It was even

more cumbersome to make modifications to the text, since any addition or deletion of

character(s) had an affect on all of the text elements with which it was grouped; each

one had to be manually modified to reflect the changes in what might be only one

element in the group. In PMSL 2.0, the author specifies the margins, justification

type, line spacing, and the text; the text is then automatically wrapped and formatted

appropriately by the system.

13

The last modification made to PMSL is the incorporation of characters,

underscores, and hyphens into element ID’s. PMSL 1.0 only allowed numbers in the

ID’s, which made it confusing and awkward to create and modify documents. With

the previous labeling scheme, an author had two choices: (1) try putting some logic

into the numbered ID’s or (2) number the ID’s arbitrarily. Of course, (1) would be a

wiser decision. However, after multiple revisions to a document containing many

elements, it would be diff icult to retain the logic in the numbered ID’s assigned. In

the end, most documents would inevitably end up with choice (2): ID’s arbitrarily

numbered. The new ID labeling scheme presented with PMSL 2.0 portrays an idea of

what the element does, without having to look into the details of the element

definition itself; this helps to make the source of a document more human readable.

2.3.2 PMSL To PMFF Compiler (PTPC)

After a multimedia document is specified in PMSL, one more step

remains to have the document ready for retrieval over the Internet. The document

must be compiled into PMFF form. The server does not fetch the PMSL specification

of the document; the server expects to find a compiled version of the document

(which is in PMFF form).

ReMDoR 1.0 did not compile the PMSL specification into the PMFF

format. In fact, no off- line processing was performed at all . The server would fetch

the PMSL document, and perform the duty of the PTPC compiler in real time as a

document was being fetched. As a result, the server response time was delayed

significantly, worsening with larger and more complicated PMSL documents. To the

user at the browser side, the application seemed to “hang up” for a while before the

document was presented. This “hang up” was due to the slow server response time.

14

To speed up server response time, all processing of a document

specification is done off line and in advance. With this approach, when a document is

requested, the server can just fetch the data it needs without any processing, and then

transmit the data to the browser immediately. Basically, the server should not be “too

smart” ; it should be told what to do and when to do it. This new philosophy

motivated the idea for the PTPC compiler and the PMFF format (explained in further

detail i n section 2.3.3).

The duties of the PTPC compiler are as follows. First, the PTPC compiler

uses Lex and Yacc tools to parse the PMSL specification, extract all of the important

data, and place the data into meaningful structures. Next, a PO graph of the

document’s elements is derived by traversing the entire element list and setting all of

the successor pointers correctly. Once the PO graph is produced, the graph must be

transitively reduced. A directed acyclic graph (PO graph) is transitively reduced if

and only if for any edge, e(v1,v2), there is no other path joining v1 to v2 through other

vertices. Figure 4 presents an example of an original PO graph and its transitively

reduced PO graph.

The next step is to set up and process the front queue from the transitively

reduced PO graph (Figures 6a-h illustrate the process). The front queue is a queue of

all the elements in the front of the PO graph (i.e., elements that are ready to be

transmitted). Elements are fed to the front queue when the number of their

predecessors that are waiting to be transmitted reaches zero. An element is removed

from the front queue when all its data is transmitted. Most elements are block

elements; all of the data associated with a block element is transmitted in one packet.

Elements such as images and audio, on the other hand, are known as stream elements.

15

They require multiple transmissions to completely send all of the cells that make up

the entire data. Since the compiler is not actually transmitting data, the elements are

not being transmitted as they are removed from the front queue. Instead, the data is

written to a file in PMFF form during PMFF generation, which happens to be the next

and final stage of PTPC compilation. The PMFF format is explained in greater detail

in the next section.

Figure 4: (A) Original PO Graph (B) Transitively Reduced PO Graph

2.3.3 Prototype Multimedia File Format (PMFF)

The format of a PMFF file is presented in Appendix B. A PMFF file is

divided into three major sections: pendefs, service profile, and elements. The pendef

section lists all the pens that were defined in the PMSL specification either explicitly

Elem 2

Elem 3

Elem 4

Elem 5

Elem 6

Elem 7

Elem 8

Elem 9Elem 1

 represents a transitive edge

Elem 2

Elem 3

Elem 4

Elem 5

Elem 6

Elem 7

Elem 8

Elem 9Elem 1

B.

A.

16

or implicitl y (PMSL 1.0 syntax implicitl y defines pens). The service profile consists

of an array of integers that represent the reliabilit y and order associated with each and

every document element. Finally, the element section is the output of the front queue

processing mentioned above in section 2.3.2. In essence, it is a li st of “ ready to go” ,

packaged up data that the server can just read and transmit with littl e intelli gence

needed on the server’s part.

2.4 Server

The duty of the server is to li sten for any connection requests from

browsers fetching documents that exist on the server site. ReMDoR 2.0’s server is no

longer aware of PMSL specifications as it once was in version 1.0; instead, the server

expects to find the PMFF file for the document being requested. If the appropriate

PMFF file is not found by the server, the browser is notified of the non-existing

document. Otherwise, the server begins reading and transmitting the document data

to the browser.

PMFF data transmission consists of three major stages. The server first

transmits all the pendefs reliably, but unordered. Pendefs are transmitted first to

ensure that all of the resources needed for proper document presentation arrive before

any element data arrives, thus avoiding “ungraceful degradation” to the presentation.

Transmitting pendefs while element data is also being transmitted may cause

unnecessary delays during presentation due to loading arriving pen information.

However, the pendefs use an unordered service because this service provides an

advantage; if a data packet is lost on its original transmission, the client can proceed

with processing the others while the lost one is retransmitted [1].

17

In the second stage of PMFF data transmission, the service profile is

passed down to the transport layer. Without the entire service profile at the client

side, elements can not receive the proper ordering and reliabilit y they require. The

server and browser, however, have no knowledge of order and reliabilit y

requirements; the transport layers on both sides of the connection are responsible for

these requirements.

Element data is then transmitted in the third and final stage of PMFF

data transmission. The arrangement of the element data in the PMFF file eases the job

of the server. Block elements and stream elements’ cells are already listed in the

correct order for transmission. In addition, the POCv2 transport layer at this point

already has the reliabilit y and ordering requirements for all the elements. The server

does not need to concern itself with these details; it just transmits the data in the order

specified in the PMSL file, and leaves the work to the transport layer.

2.5 Browser (Client)

The browser allows a user to connect to a server and request a document

for presentation. The browser then presents the document elements as they are

delivered by the transport service [1]. The browser consists of presentation display

code and user interface code. The entire browser code is much more modularized

than it was in version 1.0. Improved modularization of the code allows for faster

prototyping and easier integration of future research work (such as new image

compressions). Since the presentation display code is presented in Conrad et al [1],

only modifications will be explained. Details of the user interface will be presented

due to the significant changes in ReMDoR 2.0.

18

Currently, the only modification to the presentation code is in the image

display process. In ReMDoR 1.0, the browser did not display any part of an image

until it could be displayed in its entirety. In other words, the browser buffered image

data until all of it arrived; then, it displayed the image all at once. Although the code

for this type of image display processing is simple, there is a more useful way:

progressive image display. This means that once the PO restraints dictate that an

image is ready to be presented, the image is updated to the display as the data arrives

[12]. To explain why progressive image display is preferred, the underlying goal of

ReMDoR and POCv2 must be kept in mind: that goal is to deliver a faster, more

“gracefully degradable” presentation to the user. System performance is enhanced

when image data can be updated to the screen at an earlier point in time. With this in

mind, progressive image display is clearly better.

ReMDoR 2.0 involved a major over-haul to ReMDoR 1.0’s user interface

(see Figure 5). The changes to the user interface create a more user-friendly

environment for experimenting and data gathering. The most visible change is the

Web browser look-and-feel. ReMDoR 2.0’s interface incorporates: (1) a URL style

of retrieving remote documents, (2) an abilit y to browse directories, (3) bookmarks,

(4) navigation buttons, (5) a “view source” feature, and (6) a message field showing

connection and presentation progress. Thanks to URL style of addressing remote

documents, experiments can be run “unattended” by using an automated script.

Debugging menus have been added to the interface to easily isolate various modules

into producing debugging output. As a result, identifying and locating software bugs

can be done quickly and easily; thus, promoting faster prototyping. With the new

19

user interface, the ability to run experiments via script control not only adds

convenience, but is also more productive.

Figure 5: Changes in Browser’s User Interface

ReMDoR 1.0 ReMDoR 2.0

20

Figure 6a: (Snapshot 1) Elem 1 has no predecessors -- it is inserted into the
Front Queue

Figure 6b: (Snapshot 2) Elem 1 is de-queued & transmitted -- its successors are
released; Elem 2, 3 have no predecessors -- they are inserted into
the Front Queue

Elem 2

Elem 3

Elem 5Elem 1

P
ar

ti
al

 O
rd

er

Elem 1

Front Queue

Elem 4 C
a
r

Elem 2

Elem 3P
ar

ti
al

 O
rd

er

Elem 1

Front Queue Transmitted

Elem 2Elem 3

Elem 5Elem 4 C
a
r

21

Figure 6c: (Snapshot 3) Elem 2 is de-queued & t ransmitted – its successors are
released; Elem 3 remains in the Front Queue; No other element can
be inserted into the Front Queue at this time

Figure 6d: (Snapshot 4) Elem 3 is de-queued & t ransmitted -- its successors are
released; Elem 4 has no predecessors – since it is a stream element,
its Cell 1 is inserted into the Front Queue

Elem 3P
ar

ti
al

 O
rd

er

Elem 2

Front Queue Transmitted

Elem 3

Elem 5Elem 4 C
a
r

Front Queue Transmitted

Elem 4

P
ar

ti
al

 O
rd

er

Elem 3
Elem 4
(Cell 1)

Elem 5C
a
r

22

Figure 6e: (Snapshot 5) Elem 4’s Cell 1 is de-queued & t ransmitted -- its
successor can not be released at this time; Elem 4’s Cell 2 is
inserted into the Front Queue

Figure 6f: (Snapshot 6) Elem 4’s Cell 2 is de-queued & t ransmitted – its
successor can not be released at this time; Elem 4’s Cell 3 is
inserted into the Front Queue

Front Queue Transmitted

Elem 4

P
ar

ti
al

 O
rd

er

Elem 4
(Cell 1)

Elem 4
(Cell 2)

Elem 5C
a
r

Front Queue Transmitted

Elem 4

P
ar

ti
al

 O
rd

er

Elem 4
(Cell 2)

Elem 4
(Cell 3)

Elem 5

23

Figure 6g: (Snapshot 7) Elem 4’s Cell 3 is de-queued & t ransmitted -- its
successor can now be released; Elem 5 is inserted into the Front
Queue

Figure 6h: (Snapshot 8) Elem 5 is de-queued & t ransmitted – it has no
successors to release; Front Queue processing is done

Front Queue Transmitted

Elem 5

P
ar

ti
al

 O
rd

er

Elem 4
(Cell 3)Elem 4

Front Queue Transmitted

P
ar

ti
al

 O
rd

er

Elem 5

24

Table 1: Division of Work

PMSL 2.0 features
new text handling myself
txtformatdefs myself
new element ID's myself
all other changes Conrad and myself

PTPC routines
parsing myself
produce partial order myself
transitive reduction Conrad
PMFF generation myself

PMFF
specification Conrad and myself
implementation myself

Server
specification Conrad and myself
implementation Conrad and myself

Browser features
modularization Conrad and myself
progressive image display Conrad and myself
new user-interface myself

25

Chapter 3

CONCLUSION AND FUTURE WORK

ReMDoR 2.0 introduces improvements that contribute to ongoing

research in multimedia document retrieval over PO/PR transport protocols. First,

version 1.0’s instantaneous image display has been replaced by progressive image

display. As a result, ReMDoR 2.0 is able to display more image data at an earlier

point in time; thus, delivering a faster, more “gracefully degradable” presentation to

the user. Second, modularization of code and better debugging tools allow faster

software development in ReMDoR 2.0; this eases the incorporation of new features

(such as video) in the system that might be useful for future research. An interface

more similar to Web browsers is one of the new features that makes running

experiments more convenient and more productive with ReMDoR 2.0. Additionally,

the server’s off line PTPC compilation enhances eff iciency and speeds up document

retrieval, making individual document experimenting less time consuming. Gathering

data, however, requires many experiments to be repeated, which may become tedious

and time consuming if they must be performed manually. To address this issue, a new

scripting abilit y to automate experiments has been added; it improves experimenting

and data gathering eff iciency by allowing experiments to be repeated many times,

often at night during low traff ic loads, without human intervention.

The improvements in ReMDoR 2.0 contribute to the research of new

network transport protocols and new image compressions. Usage of UTL, allows

ReMDoR to easily incorporate new innovative protocols, such as UC, SP, and TX

26

[11], into the comparative testing of transport protocols. In addition, new image

formats, such as Wavelet-based encoding and Network-Conscious GIF [13][14], can

be easily introduced in to the newly modularized image processing routines.

ReMDoR 2.0 opens new paths and sparks new ideas for further research.

With ReMDoR 2.0, POCv2 can be used to experiment with and test the performance

of multimedia document retrieval over a PO/PR transport protocol. Using the Lossy

Router (LR), various levels of loss can be introduced into a virtually lossless Ethernet

connection between the server and the browser [6] (see Figure 7). Obviously, a

PO/PR service provides no benefit i f the network has no loss or reordering; however,

it will be interesting to see at which loss rate PO/PR service starts to provide

significant benefit that can be perceived by the user. In addition, POCv2’s feature,

“graceful degradation” , can be put to the test over a spectrum of different network

conditions.

Figure 7: Testing Using the Lossy Router

POCv2
Transport Layer

Client (browser) Server

POCv2
Transport Layer

Lossy Router

Ethernet Ethernet

27

ReMDoR can also be used to compare the overhead of a PO/PR service

(POCv2) vs. an unordered/unreliable and vs. an ordered/reliable service. This

comparison can be done by retrieving documents over POCv2 with all elements set to

“no order, everything unreliable” or “ total order, everything reliable”, respectively;

then retrieving the same documents over an unordered/unreliable and an

ordered/reliable transport protocol.

Although a PO/PR service seems to be an eff icient solution for remote

multimedia document retrieval and other Internet applications, the appropriate

definition and implementation of such a service can be quite challenging. POCv2 is

only one flavor of a PO/PR service. Many researchers [15-23], including the PEL

research group[24], are currently working on other definitions and implementations of

PO/PR services. These efforts are working towards the goal of determining if a

flexible, general transport protocol is feasible; and if so, what are the specifications of

such a protocol? Incorporating new experimental transport protocols into the

framework of ReMDoR as they are developed, will allow ReMDoR to be one of the

vehicles used to investigate this research goal.

28

Appendix A

PMSL 2.0 SYNTAX

< > non-terminals
bold case sensitive terminals

bold & italics case insensitive terminals
::= equals or reduces to
| or
~ not (everything EXCEPT what follows it)

() group together
[] optional
{ } zero or more occurrences

<Document> ::= [<ColordefList>] [<FontdefList>] [<PendefList>] [<TxtformatdefList>] <Elements>

<ColordefList> ::= <Colordef> {<Colordef>}

<Colordef> ::= COLORDEF <XColorName> <Id>

<XColorName> ::= <String>

<FontdefList> ::= <Fontdef> {<Fontdef>}

<Fontdef> ::= FONTDEF <Id>

 ::= " – (<Letter> | <Digit> | - | *) {<Letter> | <Digit> | - | *} "

<PendefList> ::= <Pendef> {<Pendef>}

<Pendef> ::= PENDEF <Id> <PendefBody>

<PendefBody> ::= <PenAttribute> {<PenAttribute>}

<PenAttribute> ::= (FOREGROUND <Id>) | (LINEWIDTH <Int>) | (FONT <Id>)

<TxtformatdefList> ::= [<TxtformatdefList>] <Txtformatdef>

<Txtformatdef> ::= TXTFORMATDEF <Id> <TxtformatdefBody>

29

<TxtformatdefBody> ::= TOP <Int> LEFT <Int> RIGHT <Int> JUST <JustType> SPACE <Int>

<JustType> ::= L | C | R

<Elements> ::= [<Elements>] <ElemBlock>

<ElemBlock> ::= <ElemBlockWithNext> | <ElemBlockWithoutNext>

<ElemBlockWithNext> ::= ELEMENT <Id> : <ElemNext> . <Reliability> <ElemBody>

<ElemBlockWithoutNext> ::= ELEMENT <Id> <Reliability> <ElemBody>

<Reliability> ::= RELIABLE | UNRELIABLE | PARTIALLY-RELIABLE

<ElemNext> ::= [<ElemNext> ,] <Id>

<ElemBody> ::= <Box> | <Line> | <Text> | <Audio> | <Image> | <Hotspot> | <Pause> | <Null>
| <Erase> | <End>

<Box> ::= <BoxOldSyntax> | <BoxNewSyntax>

<BoxOldSyntax> ::= GRAPHIC FOREGROUND <Id> LINEWIDTH <Int> . BOX <CornerX1>
 <CornerY1> <CornerX2> <CornerY2>

<BoxNewSyntax> ::= PEN <Id> BOX <CornerX1> <CornerY1> <CornerX2> <CornerY2>

<Line> ::= <LineOldSyntax> | <LineNewSyntax>

<LineOldSyntax> ::= GRAPHIC FOREGROUND <Id> LINEWIDTH <Int> . LINE <X1> <Y1>
 <X2> <Y2>

<LineNewSyntax> ::= PEN <Id> LINE <X1> <Y1> <X2> <Y2>

<X1> ::= <Y1> ::= <X2> ::= <Y2> ::= <Int>

<Text> ::= <TextOldSyntax> | <TextNewSyntaxWithFormat> | <TextNewSytaxWithoutFormat>

<TextOldSyntax> ::= GRAPHIC FOREGROUND <Id> FONT <Id> . TEXT <CornerX> <CornerY>
 <String> .

<TextNewSyntaxWithOutFormat> ::= PEN <Id> TEXT TOP <Int> LEFT <Int> RIGHT <Int> JUST
 <JustType> SPACE <Int> <StringList>

<TextNewSyntaxWithFormat> ::= PEN <Id> TEXT TXTFORMAT <Id> <StringList>

<StringList> ::= [<StringList>] <String>

<Audio> ::= AUDIO <Path>

<Image> ::= <ImageOldSyntax> | <ImageNewSyntax>

<ImageOldSyntax> ::= GRAPHIC . IMAGE <CornerX1> <CornerY1> <Path>

30

<ImageNewSyntax> ::= IMAGE <ImageType> <CornerX1> <CornerY1> <Path>

<ImageType> ::= GIF | NCG

<Hotspot> ::= <ContinueOldSyntax> | <PenContinue> | <PenLink> | <NoPenContinue> |
 <NoPenLink>

<ContinueOldSyntax> ::= GRAPHIC . HOTSPOT <CornerX1> <CornerY1> <CornerX2>
<CornerY2> CONTINUE

<PenContinue> ::= PEN <Id> HOTSPOT <CornerX1> <CornerY1> <CornerX2> <CornerY2>
 CONTINUE

<PenLink> ::= PEN <Id> HOTSPOT <CornerX1> <CornerY1> <CornerX2> <CornerY2> LINK
 <Url>

<NoPenContinue> ::= HOTSPOT <CornerX1> <CornerY1> <CornerX2> <CornerY2> CONTINUE

<NoPenLink> ::= HOTSPOT <CornerX1> <CornerY1> <CornerX2> <CornerY2> LINK <Url>

<Url> ::= "pmtp:// <Hostname> : <Port> : <Mechanism> / <Path> "

<Hostname> ::= <HostnameSegment> . {<HostnameSegment> .} <HostnameSegment>

<HostnameSegment> ::= <Letter> {<Letter>}

<Port> ::= <Int>

<Path> ::= [/] <PathSegment> {/ [<PathSegment>]} [/]

<PathSegment> ::= (<Letter> | <Digit> | . | # | _ | -) { <Letter> | <Digit> | . | # | _ | - }

<Pause> ::= PAUSE <Time>

<Time> ::= <Int>

<Null> ::= NULL

<Erase> ::= ERASE <Id>

<End> ::= END

<Letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Int> ::= <Digit> {<Digit>}

<CharId> ::= <Letter> {<Letter> | <Digit> | _ | -}

<Id> ::= <Int> | <CharId>

31

<CornerX1> ::= <CornerY1> ::= <CornerX2> ::= <CornerY2> ::= <Int>

<String> ::= " {~(\n)} "

<FilePathName> ::= <String>

32

Appendix B

PMFF FILE STRUCTURE

< > non-terminals
bold terminals
::= equals or reduces to
| or
~ not (everything EXCEPT what follows it)

() group together
[] optional
{ } zero or more occurrences

% italics everything past % is a comment

<File> ::= <PendefSection> <ServiceProfile> <ElementSection>

<PendefSection> ::= <NumPens> { <Pen>}

<NumPens> ::= <Int> % total number of pens in the pendefs section

<Pen> ::= <PenBodyLength> <PenBody> \n

<PenBodyLength> ::= <Int> % total number of characters (including spaces) in the body of the pen

<PenBody> :: = pen <PenNum> / <NumPens-1> <PenId> fg <Color> lw <Linewidth> ft

<PenNum> ::= <Int> % the number assigned to this pen (numbered 0 to <NumPens> - 1)

<NumPens-1> ::= <Int> % total number of pens minus one (<NumPens> - 1)

<PenId> :: = (<Int> | <CharId>) | <PenOnTheFlyId>

<PenOnTheFlyId> ::= _$PEN <Int> _

<Çolor> ::= <String> | 0 % a 0 means the color is not specified

<Linewidth> ::= <Int> % a linewidth of -1 means it is not specified

 ::= (" – (<Letter> | <Digit> | - | *) { <Letter> | <Digit> | - | * } ") | <NoFont>

<NoFont> ::= 0 % a 0 means the font is not specified

<ServiceProfile> ::= <ServiceProfileLength> <NumElements> <ElemProfile> { ElemProfile}

33

<ServiceProfileLength> ::= <Int> % number of 32-bit integers (including length) in entire profile

<NumElements> ::= <Int> % total number of elements in the document

<ElemProfile> ::= <Reliability> <NumSuccessors> <Successor>

<NumSuccessors> ::= <Int> % number of successors the element has

<Successor> ::= <Int> % successor’s element number (implicitl y numbered in the service profile)

<ElementSection> ::= <Element> {<Element>}

<Element> ::= <ElemNum> <MoreCells?> <NumFileBytesToRead> <ElemBodyLength> elem
 <ElemNum> / <NumElements-1> <ElemId> <ElemBody> [<ElemTrailer>] \n

<ElemeNum> ::= <Int> % the number assigned to this element (numbered 0 to N-1)

<MoreCells?> ::= <Int> % 1 if this element has more cell s (or data packets) to be sent; 0 if not

<NumFileBytesToRead> ::= <Int> % number of bytes that need to read from a file

<ElemBodyLength> ::= <Int> % number of characters (including spaces) in the body of the element

<NumElements-1> ::= <Int> % total number of elements minus one (<NumElements> - 1)

<ElemId> ::= <Id>

<ElemBody> ::= <Graphic> | <Hotspot> | <Erase> | <Audio> | <Pause> | <Null> | <End>

<ElemTrailer> ::= <FileOffset> [<FilePath>] % FilePath is only sent with the first cell

<FilePath> ::= [/] <PathSegment> {/ [<PathSegment>]}

<PathSegment> ::= (<Letter> | <Digit> | . | # | _ | -) { <Letter> | <Digit> | . | # | _ | - }

<Graphic> ::= draw (<Line> | <Box> | <Text> | <Image>)

<Line> ::= line <X1> <Y1> <X2> <Y2>

<X1> ::= <Y1> ::= <X2> ::= <Y2> ::= <Int>

<Box> ::= box <CornerX1> <CornerY1> <CornerX2> <CornerY2>

<CornerX1> ::= <CornerY1> ::= <CornerX2> ::= <CornerY2> ::= <Int>

<Text> ::= text <TopMargin> <LeftMargin> <RightMargin> <Justification> <Spacing> \n <StrList>

<TopMargin> ::= <LeftMargin> ::= <RightMaring> ::= <Spacing> ::= <Int>

<Justification> ::= l | c | r

<StrList> ::= <String> {<String>}

<String> ::= " {~(\n)} "

34

<Image> ::= image <ImageType> <CornerX1> <CornerY1>
<ImageType> ::= gif | ncg

<Hotspot> ::= hotspot <PenNum> <CornerX1> <CornerY1> <CornerX2> <CornerY2>
 <HotspotType> <Url>

<HotspotType> ::= c | l % c = continue hotspot; l = link hotspot

<Url> ::= <NoUrl> | ("pmtp:// <Hostname> : <Port> : <Mechanism> / <Path> ")

<NoUrl> ::= 0

<Hostname> ::= <HostnameSegment> . {<HostnameSegment> .} <HostnameSegment>

<HostnameSegment> ::= <Letter> {<Letter>}

<Port> ::= <Int>

<Path> ::= <FilePath> [/]

<Erase> ::= erase <ElemNum>

<Audio> ::= audio

<Pause> ::= pause <PauseTime>

<PauseTime> ::= <Int>

<Null> ::= null

<End> ::= end

<Letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Int> ::= <Digit> {<Digit>}

<CharId> ::= <Letter> {<Letter> | <Digit> | _ | -}

<Id> ::= <Int> | <CharId>

35

REFERENCES

[1] P. T. Conrad, E. Golden, P. D. Amer, and R. Marasli. A multimedia
document retrieval system using partially-ordered/partially-reliable transport
service. In Multimedia Computing and Networking 1996 (MMCN96;
sponsored by SPIE/IS&T), San Jose, CA, USA, January 1996.

[2] S. Iren, P. D. Amer, and P. T. Conrad. The transport layer: Tutorial and
survey. Technical Report 98-02, CIS Dept., University of Delaware, January
1998.

[3] A. S. Tanenbaum. Computer Networks. Prentice-Hall, 1996.

[4] J. B. Postel. User Datagram Protocol. Internet Request for Comments
RFC768, August 1981.

[5] J. B. Postel. Transmission Control Protocol. Internet Request for Comments
RFC793, September 1981.

[6] P. D. Amer, P. T. Conrad, E. Golden, S. Iren, and A. Caro. Partially-ordered,
partially-reliable transport service for multimedia applications. In Advanced
Telecommunications/Information Distribution Research Program Annual
Conference, College Park, MD, January 1997.

[7] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new
generation of protocols. In SIGCOMM ’90, pages 200-209, Philadelphia,
Pennsylvania, September 1990. ACM. Computer Communications Review,
Vol. 20(4), September 1990.

[8] M. Wynblatt. Position statement on multimedia synchronization. In IEEE
Workshop on Multimedia Synchronization, Tysons Corner, VA, May 1995.

[9] J. Schnepf, J. A. Konstan, and D. Du. Dong FLIPS: Flexible interactive
presentation synchronization. In Proceedings of the International Conference
on Multimedia Computing and Systems, pages 213-222, Washington, DC,
May 1995. IEEE.

36

[10] P. T. Conrad, P. D. Amer, R. Marasli. Graceful degradation of multimedia
documents via partial order and partial reliability transport protocols. In
IEEE Workshop on Multimedia Synchronization, Tysons Corner, VA, May
1995.

[11] P. T. Conrad, P. D. Amer, M. Taube, G. Sezen, S. Iren, and A. Caro. Testing
environment for innovative transport protocols. In Advanced
Telecommunications/Information Distribution Research Program Annual
Conference, College Park, MD, February 1998.

[12] K. Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, Inc, 1996.

[13] P. D. Amer, S. Iren, G. Sezen, P. T. Conrad, M. Taube, and A. Caro.
Network-conscious GIF image transmission over the Internet. In 4th
International Workshop on High Performance Protocol Architectures
(HIPPARCH ’98), June 1998.

[14] S. Iren, P. D. Amer, and P. T. Conrad. Network-conscious compressed
images over wireless networks. In 5th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication Services (IDMS' 98),
Oslo, Norway, September 1998.

[15] M. Ahuja. Flush primitives for asynchronous distributed systems. Info
Processing Letters, 34(1):5-12, February 1990.

[16] K. P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36-53, December 1993.

[17] D. Cheriton. VMTP: Versatile message transaction protocol specification.
(Internet) Network Working Group, Request for Comments RFC1015, April
1993.

[18] B. J. Dempsey. Retransmission-Based Error Control For Continuous Media
Traffic in Packet-Switched Networks. PhD thesis, University of Virginia,
1991.

[19] F. Gong and G. Parulkar. An application-oriented error control scheme for
high-speed networks. Technical Report WUCS-92-37, Department of
Computer Science, Washington University in St. Louis, November 1992.

[20] L. Lamport. Time, clocks and the ordering of events in a distributed system.
CACM, 21(7):558-565, July 1978.

37

[21] G. Neiger and S. Toueg. Substituing for real time and common knowledge in
asynchronous distributed systems. In Proc 4th Symp on Principles of
Distributed Computing, pages 281-293, 1987.

[22] L. Peterson, N. Buchholz, and R. Schlighting. Preserving and using context
information in interprocess communication. ACM Trans on Computer
Systems, 7(3):217-218, August 1989.

[23] T. F. La Porta and M. Schwartz. The multistream protocol: A highly flexible
high-speed transport protocol. IEEE Journal on Selected Areas in
Communications, 11(1):519-530, May 1993.

[24] E. Golden. TRUMP: Timed-Reliabilit y Unordered Message Protocol. MS
Thesis, CIS Dept., University of Delaware, 1997.

[25] P. T. Conrad. Order, Reliabilit y, and Synchronization in Transport Layer
Protocols for Multimedia Document Retrieval. PhD Dissertation, CIS Dept.,
University of Delaware, (in progress).

[26] S. Iren, P. D. Amer, A. Caro, P. T. Conrad, G. Sezen, and M. Taube.
Network-conscious compressed image transmission over battlefield networks.
In Advanced Telecommunications/Information Distribution Research
Program Annual Conference, College Park, MD, February 1998.

[27] P. D. Amer, C. Chassot, T. J. Connolly, M. Diaz, and P. T. Conrad. Partial
order transport service for multimedia and other applications. IEEE/ACM
Trans on Networking, 2(5):440-456, October 1994.

[28] T. Connolly, P. D. Amer, and P. T. Conrad. An extension to TCP: Partial
order service. Request for Comments (Experimental) RFC 1693, Internet
Engineering Task Force, November 1994.

[29] P. T. Conrad, P. D. Amer, E. Golden, S. Iren, R. Marasli, and A. Caro.
Transport QoS over unreliable networks: No guarantees, no free lunch! In
IFIP Fifth International Workshop on Quality of Service (IWQOS ’98), New
York, NY, USA, May 1997.

[30] R. Marasli, P. D. Amer, and P. T. Conrad. Retransmission-based partially
reliable services: An analytic model. In IEEE INFOCOM, San Fransisco,
California, March 1996.

[31] R. Marasli, P. D. Amer, P. T. Conrad, and G. Burch. Partial order transport
service: An analytic model. In Ninth Annual IEEE Workshop on computer
Communications, Marathon, Florida, October 1991.

38

[32] R. Marasli. Partially Ordered and Partially Reliable Transport Protocols:
Performance Analysis. PhD thesis, CIS Dept., University of Delaware, 1997.

[33] J. A. Rody and A. Karmouch. A remote presentation agent for multimedia
databases. In Proceedings of the International Conference on Multimedia
Computing and Systems, pages 223-230, Washington, DC, May 1995. IEEE.

[34] W. R. Stevens. UNIX Network Programming. Prentice-Hall, 1990.

