
 1 of 5

FILE TRANSFER IN FCS NETWORKS USING TRANSPORT LAYER MULTISTREAMING*

Sourabh Ladha, Paul D. Amer, Janardhan Iyengar, Armando L. Caro Jr.
Protocol Engineering Lab

Computer and Information Sciences
University of Delaware

{ladha, amer, iyengar, acaro}@cis.udel.edu

ABSTRACT

We identify overheads associated with the current FTP
protocol, which uses TCP for transport. We discuss why
using TCP to avoid such overheads puts a burden on the
application. Unlike TCP, SCTP allows transport layer
multistreaming within a single association. We present two
modifications to FTP, which use SCTP multistreaming in a
“TCP-friendly” manner. Our modifications avoid the
identified overheads in the current FTP protocol without
introducing complexity at the application. We have
implemented these modifications in the FreeBSD
environment. Extensive emulations have been carried out to
compare the current FTP design with the modifications
introduced, in terms of end to end latency. Our results
indicate dramatic improvements in transfer time and
throughput achieved between two endpoints under certain
network conditions.

1. INTRODUCTION

File Transfer Protocol (FTP) [2] is one of the most common
protocols for bulk data transfer. Over the years there has
been a steady decline in the use of FTP, chiefly attributed
to its bulky nature as well as due to inefficiency seen in end
to end delay statistics. Several extensions have been
proposed to modify FTP [e.g. 6, 8] but none of them aim at
reducing file transfer latency. FTP uses TCP [3] for
transport. We have identified reasons why modifying FTP
in order to reduce latency overheads has been difficult,
mainly due to the existing TCP semantics which put a
burden on the application by introducing complexity. One
of the ill affects of this has been that several FTP
implementations aiming at performance enhancement end
up using multiple TCP connections to achieve better
throughput. This approach has been regarded as “TCP-
unfriendly” [9] as it allows the application to gain unfair
share of bandwidth at the expense of other network flows

*Prepared through collaborative participation in the Communication and
Network Consortium sponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

and disturbs the network equilibrium. Future Combat
Systems (FCS) networks require crucial information to be
delivered between endpoints with least observed latency.
Keeping this in mind, our research focuses on improving
end to end latency and throughput in the event of file
retrievals using FTP.

With the introduction of innovative transport protocols,
applications have been exposed to a host of new features.
We present modifications to FTP using Stream Control
Transmission Protocol (SCTP) [11] as transport. SCTP is a
standards track transport layer protocol in the IETF. Like
TCP, SCTP provides a full duplex, reliable transmission
service to the application. SCTP has a rich and unique
feature set suitable for a host of applications. This paper
focuses on the use of one such feature, multistreaming.
SCTP multistreaming allows logical division of an
association into streams with each stream having its own
delivery mechanism. This decouples data delivery and
transmission and prevents Head of the Line Blocking
problem. All the streams within a single association share
the same congestion and flow control parameters. In this
paper we identify how SCTP, and in particular SCTP
multistreaming can benefit the application in reducing
overheads. Moreover, SCTP’s support for transport layer
multihoming provides network fault tolerance which is
crucial for survivability and persistent on-the-move
sessions in FCS networks.

The remainder of the paper is organized as follows. Section
2 quantifies the overheads in current FTP design with a
detailed description of each. Some other inefficiencies of
FTP have also been noted. Section 3 talks about possible
solutions to eliminate the overheads using TCP as the
transport and the drawbacks of each of them. Section 4 and
5 talk about the changes introduced in FTP using SCTP
multistreaming and a description of how these designs can
reduce some of the overheads. Section 6 presents the
experimental results and discussion. Section 7 concludes
the paper.

 2 of 5

2. INEFFICIENCIES IN THE FTP PROTOCOL

We quantify the overheads associated with the FTP
protocol. The following discussion also describes some of
the implicit inefficiencies in the FTP design.

2.1 Separate Data and Control Connections

A. The out-of-band signaling approach in FTP has
consequences in terms of end to end latency. The control
connection is periodic in nature and typically remains in the
slow start phase of TCP congestion control [7]. Thus a loss
over the control connection can only be detected by a
timeout.

B. Since the data and control are on separate connections
hence there is an extra overhead, in terms of data
connection setup-teardown, of at least 1.5 Round Trip Time
(RTT) (1RTT for setup and 0.5 RTT for teardown).
Moreover the number of control blocks the server has to
maintain increases two folds.

C. Over the past years there have been considerable
discussions on the security issues involved in FTP,
attributing to the data connection information (IP address,
port number) being send out on the control connection to
assist the peer in establishing a data connection. This
causes problems for NATs and firewalls which have to
monitor and translate addressing information over the
control connection [6].

2.2 Non-persistence of the data connection

A. The non persistence of data connection causes
connection setup-teardown overheads (at least to the order
of 1.5 RTT) each time a file transfer or directory listing
request is serviced. [13] talks about how queuing delays
can increase the RTT several folds. Thus to improve end to
end delays, by avoiding network latency, extra round trips
must be minimized. Moreover processing overhead at the
end hosts is also added up in the event of allocating
resources for each new connection.

B. Repetitive probing of the congestion window (cwnd) for
each data connection, particularly repeated slow start phase
for every data transfer process. Each connection must begin
by probing for the available bandwidth before it can hover
around the steady state cwnd. Moreover a loss in the slow
start phase could lead to a timeout at the server. Figure 1
graphically shows the nature of this overhead.

C. Extra round trips in exchange of similar commands for
each data connection established (at least 1RTT in the
event of PORT command and 200 reply).

Figure 1: Expected cwnd evolution in the event of multiple
file transfers in FTP

D. In the face of multiple small file transfers in an FTP
session the server ends up having many connections lying
in the TCP TIME-WAIT state. [12] argues that per-
connection memory load from TCP can adversely affect
connection rate and throughput in the event of multiple
connections lying in the time-wait state.

3. POSSIBLE SOLUTIONS AND DRAWBACKS

We describe some of the possible solutions that try to avoid
the overheads using TCP as transport. The drawbacks
associated with each solution are presented.

A. Single persistent connection for control and data

Drawbacks: TCP provides a byte stream oriented service
and does not differentiate between the different types of
data it transmits over the same connection. Using the
current TCP semantics, this solution will burden the
application to insert application layer markers to
differentiate between control and data. This carries
complexity to the application layer and adds to the
processing. Control and file data in an FTP session are
logically different types of data. Assigning same
connection to them will introduce head of line blocking
problem and unnecessary retransmissions of data in the
event of a control reply getting lost or delayed in the
network.

B. Separate data and control connections with persistent
data connection

Drawbacks: Due to the sequential nature of commands over
the control connection, the data connection will remain idle
in between file transfers in the event of multiple files
transfers which will lead to closing of the congestion
window and repetitive probe for the available bandwidth.
Moreover this approach suffers the overheads listed in
section 2.1 of this paper.

 3 of 5

213
RETR

150

DATA

 226

SIZE

 Client Server

Stream 0

Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

SIZE
213

150

DATA

SIZE
Stream 0

Stream 0

Stream 0
Stream 1

213 RETR
RETR

 226

Stream 0

 Client Server

Stream 0
Stream 0

Stream 0

Stream 0

C. Separate data and control connections with persistent
data connections and command pipelining over the control
connection.

Drawbacks: This approach suffers from the overheads
listed in section 2.1 of this paper.

Apart from the above “TCP-friendly” solutions, over the
years implementations try to achieve better throughput
using multiple TCP connections. This approach is not
“TCP-friendly” and can adversely affect the network
equilibrium. In the face of the drawbacks in the solutions
listed and the overheads incurred, SCTP provides a TCP
friendly approach which eliminates all the overheads listed
in section 2, without complicating the role of the FTP
application.

4. USING SCTP MULTISTREAMING IN FTP

The overheads identified are mainly attributed to the fact
that FTP uses separate data and control connections. SCTP
multistreaming allows us to use streams for control and
data within a single association. Our modification uses this
feature.

The FTP client establishes an SCTP association with the
server. Two outgoing and incoming streams are
established. Stream 0 has been used for exchange of control
commands and replies. Stream 1 has been used as the data
stream. In the event of multiple file retrievals issued by the
user, the client sends out the requests on stream 0 and
receives the data on steam 1 for each file in a sequential
manner. The figure below shows the retrieval of a single
file using this modification. The outgoing stream numbers
for all the messages and data have been identified.

Figure 2: Instance of an FTP session using SCTP
multistreaming

This approach has various advantages and avoids most of
the overheads described in Section 2 except the following.
In the event of multiple file transfers the subsequent file
transfers will not be able to utilize the probed available
bandwidth. [10] describes that Max.Burst must first be
applied to recalculate the cwnd before sending out new data

chunks. When transferring multiple files the client waits for
the entire file to arrive before sending out the next file
transfer commands. Since the flow of data transfer from the
client to the sender is not maintained between consecutive
file transfers, this leads to the closing of the cwnd. The next
approach we present avoids this overhead using command
pipelining in multiple file transfers.

5. ADDING COMMAND PIPELINING TO THE

DESIGN

Even with the single connection for both data and control
as seen in the previous section, consecutive file transfers
incur the cost of closing of the cwnd as the SIZE, RETR
commands for the in sequence file in the event of multiple
file transfer is send after all the data for the previous file
has been received by the client. This leads to a situation
where the server’s congestion window closes conforming
to Section 6.1 of [10].

We present a solution which allows subsequent transfers to
utilize the probed value of congestion window in the event
of multiple file transfers. This solution uses command
pipelining to ensure the flow of data to be maintained from
the server to the client throughout the execution of the
command. The only changes that have been made to add
command pipelining are on the client side.

Figure 3: Instance of an FTP session using SCTP
multistreaming with command pipelining

The client on parsing the name list of the files sends the
SIZE command for each file at the same instance without
waiting for the reply from the server. As soon as a reply for
the SIZE command for a particular file is received the
client sends out the RETR for that file. The client uses
simple heuristics to determine whether the data coming in
is a reply on the control stream or the file data on data
stream. The figure below shows the timeline followed in
this solution. The timeline in Figure 3 gives an example of
multiple retrievals of two files. This approach overcomes
all the drawbacks listed in section 2.

 4 of 5

6. EXPERIMENTAL RESULTS

In this section we present results of emulations to measure
the effect of end to end latency in file transfers. We report
the effect of SCTP multistreaming and command pipelining
in FTP.

We have used netbed [1] (an outgrowth of Emulab which
provides integrated access to experimental networks) for
our experiments. Three nodes have been used for each set
of experiments with the client and server on two nodes and
the third node acting as a router and shaping traffic between
the client and the server nodes. The client and server nodes
have 850MHz Intel Pentium III processors and are based
on the Intel ISP1100 1U server platform. The FreeBSD
kernel implementation of SCTP available with the KAME
Stack [4] has been used on the client and server nodes.
KAME is an evolving and experimental stack mainly
targeted for IPv6/IPsec in the BSD based operating
systems. An updated snapshot of the stack (KAME snap
kit) is released every week. The snap kit of 14th October,
2002 has been installed on the client and server nodes. The
router node runs Dummynet which simulates a drop tail
router with a queue size of 50 packets and specified
bandwidth, propagation delay and packet loss ratio. The
queuing discipline, particularly the packet loss ratio has
been varied to measure the impact on transfer latency.

We implemented the protocol changes by modifying the
FTP client and server source code available with the
FreeBSD 4.6 distribution. In our experiments we measured
the total transfer time using the packet level traces as
follows. The starting time was taken as the time the client
sends out the first packet to the server following the user
“mget” command. The end time was chosen as the time the
226 control reply from the server reaches the client for the
last transfer. We measured three configurations with
varying packet loss ratio: 0, 0.1 and 0.3. The bandwidth and
propagation delay specified for the link from the client to
the server and vice versa were 1Mb/s and 35ms. The
sample size has been chosen such that a 90% confidence
level is achieved with an acceptable error not more than
one half of a second. The freely available tcpdump program
(version 3.7.1) has been used to perform packet level
traces. SCTP decoding functionality in tcpdump was
developed in collaboration of two CTA supported labs
(UD's Protocol Engineering Lab and Temple University's
Netlab).

Figures 4-5 show the transfer times taken for a transfer for
various file sizes. Each point in the graphs denotes the
mean value of the time taken for multiple file retrievals
using the “mget” user command in FTP aggregating to 10
files. Due to lack of space we have not been able to show
all the experimental results. Our results compare four
designs for FTP: (1) the current FTP protocol (over TCP),

(2) the current FTP protocol design with SCTP as the
transport protocol, (3) modified FTP protocol design which
uses multistreamed SCTP, and (4) modified FTP protocol
design which uses command pipelining over multistreamed
SCTP.

Figure 4: Latency improvements observed for smaller files
of size 10K

Figure 5: Latency improvements observed for large files of
size 1M

As can be seen from the graphs, FTP over multistreamed
SCTP with command pipelining outperforms FTP over
TCP cutting the latency by more than half for higher loss
rates. This matches our theoretical assumptions considering

 5 of 5

the reduction of extra round trips and better utilization of
available bandwidth. It can be seen form the graph that as
the loss rate increases the relative improvement in transfer
time increases. Even without the use of command
pipelining there is a significant improvement in the end to
end delay.

7. CONCLUSION AND FUTURE WORK

We have analyzed several sources of overheads in the FTP
protocol which cause added latency in file transfers. We
have proposed modifications to FTP that exploits the
multistreaming feature of SCTP. Our experimental results
confirm that adding SCTP multistreaming to FTP
dramatically reduces latency of multiple transfers, uses the
available bandwidth more effectively and reduces server
load. Also, command pipelining adds additional benefit in
improving end to end delay. FTP over multistreamed SCTP
also solves a problem that the current FTP protocol faces
with Network Address Translators (NAT) and firewalls in
transferring IP addresses and port numbers through the
control connection [6].

In the future we plan to make the design more
comprehensive for the complete FTP specification and
extensions added over the years since the release of
RFC959. FCS Networks have typically less bandwidth
available for communication. Moreover the Bit Error Rate
(BER) in FCS Networks is high. We are currently doing
experiments to observe the effect of SCTP multistreaming
in low bandwidth, high BER channels. One of the
weaknesses in our work is that we compare SCTP against
New-Reno TCP. Since SCTP uses Selective
Acknowledgements (SACK) to perform better loss
recovery, this comparison may not be fair. We are currently
investigating comparisons involving SACK TCP.

The benefits that SCTP’s multistreaming feature provides
are not limited to FTP. For example, web transfers using
HTTP (Hypertext Transfer Protocol) can also benefit from
command pipelining and aggregation of multiple transfers
in a single association [13]. Also, SCTP’s multistreaming
provides a TCP-friendly mechanism for parallel transfers to
improving user-perceived latency. Future work is to
investigate the benefits of multistreaming in other
applications such as web transfers.

ACKNOWLEDGEMENTS

We would like to thank Randall Stewart for providing
support for the KAME stack implementation of SCTP.
Also, we are grateful to Jay Lepreau and the support staff
of Netbed (formerly known as Emulab), the Utah Network
Emulation Testbed (which is primarily supported by NSF
grant ANI-00-82493 and Cisco Systems) for making their
facilities available for our experiments.

DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government.

REFERENCES

[1] B. White, L. Jay, S. Leigh, R. Robert, G. Shashi, N.
Mac, H. Mike, B. Chad, J. Abhijeet. An integrated
experimental environment for distributed systems and
networks. Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, December 2002.

[2] J. Postel, J. Reynolds, File Transfer Protocol (FTP).
RFC 959, Internet Engineering Task Force, October 1985.

[3] J. Postel, Transmission Control Protocol. RFC 793,
Internet Engineering Task Force, September 81.

[4] KAME Project, www.kame.net.

[5] L. Coene, Stream Control Transmission Protocol
Applicability Statement. RFC 3257, Internet Engineering
Task Force, April, 2002.

[6] M. Allman, S. Ostermann, C. Metz, FTP extensions for
NATS and firewalls. RFC 2428, Internet Engineering Task
Force, September, 98.

[7] M. Allman, V. Paxson, W. Stevens, TCP Congestion
Control. RFC 2581, Internet Engineering Task Force, April
99.

[8] M. Horowitz, S. Lunt, FTP Security Extensions. RFC
2228, Internet Engineering Task Force, October, 1997.

[9] S. Floyd, Fall, K., Promoting the Use of End-to-End
Congestion Control in the Internet. IEEE/ACM
Transactions on Networking, August 1999

[10] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, P.
Conrad, A. Caro, M. Tuexen, Stream Control Transmission
Protocol (SCTP) Implementers Guide. Internet Draft draft-
ietf-tsvwg-sctpimpguide-07.txt, October, 2002. Work in
progress

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V.
Paxson, Stream Control Transmission Protocol. RFC 2960,
Internet Engineering Task Force, October 2000.

[12] T. Faber, Joe Touch, Wei Yue, The TIME-WAIT state
in TCP and Its Effect on Busy Servers. Proc. Infocom '99.

[13] V. Padmanabhan, J. Mogul, Improving HTTP latency.

