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Abstract— We previously evaluated five retransmission
schemes in non-failure scenarios for transport protocols that
support multihoming. In this paper, we introduce five additional
retransmission schemes, and evaluate all ten schemes under
both non-failure and failure scenarios. We show that the best
retransmission policy dictates that (a) new data transmissions
and fast retransmissions should be sent to the same peer IP
address, and (b) timeout retransmissions should be sent to an
alternate peer IP address. This policy performs best if combined
with our Multiple Fast Retransmit algorithm.

I. INTRODUCTION

Multihoming among networked machines is a technologi-
cally feasible and increasingly economical proposition. A host
is multihomed if it can be addressed by multiple IP addresses,
as is the case when the host has multiple network interfaces.
Though feasibility alone does not determine adoption of an
idea, multihoming can be expected to be the rule rather
than the exception in the near future. For instance, cheaper
access to the Internet will motivate content providers to have
simultaneous connectivity through multiple ISPs. More and
more home users will have wired and wireless connections.
Furthermore, wireless devices may be simultaneously con-
nected through multiple access technologies. Multihoming is
improving a host’s fault tolerance at an increasingly econom-
ical cost.

The current transport protocol workhorses, TCP and UDP,
are ignorant of multihoming; TCP allows binding to only one
network address at each end of a connection. When TCP was
designed, network interfaces were expensive components, and
hence multihoming was beyond the ken of research. Lowering
interface costs and a desire for networked applications to be
fault tolerant at an end-to-end level have brought multihoming
within the purview of the transport layer.

Two recent transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [6], [10] and the Datagram
Congestion Control Protocol (DCCP) [8] support multihom-
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ing at the transport layer. The motivation for multihoming in
DCCP is mobility, while SCTP is driven by a broader and
more generic application base, which includes fault tolerance
and mobility. Of the two, we use SCTP primarily because our
focus is on fault tolerance, but the results and conclusions pre-
sented in this paper should be applicable in general to reliable
SACK-based transport protocols that support multihoming.

SCTP, an IETF standards track transport layer protocol,
allows binding of one transport layer association (SCTP’s
term for a connection) to multiple IP addresses at each end of
the association. This � to � binding allows an SCTP sender
to send data to a multihomed receiver via different destination
addresses. For example, an SCTP association between hosts�

and � in Figure 1 could be bound to both IP addresses at
each host: ��� ���
	��
����	 �
� ��	 � ���
�

. Such an association would
allow data transmission from host

�
to host � to be sent to

either � �
or � �

.
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Fig. 1. Example multihoming topology

Currently, SCTP uses multihoming for redundancy pur-
poses only and not for concurrent multipath transfer [7]. Each
endpoint chooses a single peer IP address as the primary des-
tination address, which is used for transmission of new data.
Retransmitted data are sent to an alternate peer IP address(es).
RFC2960 [10] states in Section 6.4 that “when its peer is
multihomed, an endpoint SHOULD try to retransmit [data] to
an active destination transport address that is different from
the last destination address to which the [data] was sent.”

SCTP’s current retransmission policy attempts to improve
the chance of success by sending all retransmissions to an
alternate peer IP address [9]. The underlying assumption
is that loss indicates either that the network path to the
primary destination is congested, or the peer IP address used
is unreachable. Hence, SCTP retransmits to an alternate peer
IP address in attempt to avoid another loss of the same data.
We have shown previously that SCTP’s current retransmission



policy in RFC2960 actually degrades performance in some
circumstances [4]. We also explored alternative retransmission
schemes, and concluded that best performance occurs if our
Multiple Fast Retransmit algorithm is used and lost data are
retransmitted to the same peer IP address to which they were
originally sent [3].

However, our previous results assume reachability of all
peer IP addresses at all times (i.e., no failures). In this paper,
we evaluate retransmission schemes during failure scenarios.
We also introduce five additional schemes, resulting in a
total of ten retransmission schemes that we evaluate in both
non-failure and failure scenarios. We show that the best
retransmission policy dictates that (a) new data transmissions
and fast retransmissions should be sent to the same peer IP
address, and (b) timeout retransmissions should be sent to an
alternate peer IP address. We find this policy to perform best
if combined with our Multiple Fast Retransmit algorithm.

We begin in Section II by describing the retransmission
schemes evaluated in this paper. We comparatively evaluate
these schemes using ns-2 simulation as described in Sec-
tion III. The results and analysis of non-failure and failure
scenarios are presented in Section IV and Section V, respec-
tively. Section VI concludes the paper and discusses future
work.

II. RETRANSMISSION SCHEMES

The ten retransmission schemes evaluated are combinations
of the following three policies and three algorithms.

A. Policies

1) AllRtxAlt - All retransmissions are sent to an alternate
destination. This policy represents SCTP RFC2960 and
attempts to bypass transient network congestion and
path failures. A drawback is that alternate destinations
often have overly conservative (i.e., too large) RTOs,
which significantly degrades performance when
retransmissions of lost packets themselves are lost [4].

2) AllRtxSame - All retransmissions are sent to the same
destination. This policy often improves performance
in non-failure scenarios by using the destination with
the most accurate RTO [4]. However, if the primary
destination becomes unreachable, this policy will not
successfully deliver any data until the sender detects
failure and fails over to an alternate destination.

3) FrSameRtoAlt - Fast retransmissions are sent to the
same destination, and timeout retransmissions are sent
to an alternate destination. This policy is introduced in
this paper as a compromise between the two policies
above. Fast retransmissions are generally caused by

network congestion, whereas timeouts may be caused
by either severe congestion or path failure.

B. Algorithms

1) Heartbeat After RTO (HAR) - In addition to normal
timeout behavior, a heartbeat (control probe normally
sent to each idle destination for RTT measurement
and reachability status) is sent immediately to the
destination on which a timeout occurred. This algorithm
is useful to obtain more RTT measurements and hence
a more accurate RTO setting for alternate destinations
that experience timeouts. This algorithm applies only
to AllRtxAlt and FrSameRtoAlt policies, because it
offers no benefits to AllRtxSame.

2) Timestamps (TS) - Similar to TCP’s timestamp
option, each packet includes a 12-byte timestamp
to eliminate the retransmission ambiguity. Thus,
Karn’s algorithm can be eliminated, and successful
retransmissions on alternate paths can be used to
obtain RTT measurements. This algorithm applies only
to AllRtxAlt and FrSameRtoAlt policies, because the
packet overhead is not worth the limited performance
gain (if any) for AllRtxSame.

3) Multiple Fast Retransmit (MFR) - The sender maintains
extra recovery state to allow lost fast retransmissions
to be fast retransmitted again. Thus, MFR reduces the
number of timeouts. This algorithm applies only to
AllRtxSame and FrSameRtoAlt policies, because using
it with AllRtxAlt may often generate spurious fast
retransmissions.

C. Schemes

1) AllRtxAlt (i.e., original SCTP)
2) AllRtxAlt+HAR
3) AllRtxAlt+TS
4) AllRtxSame
5) AllRtxSame+MFR
6) FrSameRtoAlt
7) FrSameRtoAlt+HAR
8) FrSameRtoAlt+TS
9) FrSameRtoAlt+MFR

10) FrSameRtoAlt+MFR+HAR

Further motivation and details about these retransmission
policies and algorithms can be found in [3].

III. METHODOLOGY

We evaluate the ten retransmission schemes described in
Section II using University of Delaware’s SCTP module [5]
for the ns-2 network simulator [1]. Figure 2 illustrates the net-
work topology used. The core links have a 10Mbps bandwidth



and a 25ms one-way delay. Each router, � , is attached to a
dual-homed node (

�
or � ) via an edge link with 100Mbps

bandwidth and 10ms one-way delay. The end-to-end one-way
delay is 45ms, which approximates reasonable Internet delays
for distances such as coast-to-coast of the continental US, and
eastern US to/from western Europe.

Fig. 2. Simulation network topology

The SCTP sender,
�

, has two paths (labeled Primary and
Alternate) to the SCTP receiver, � . We introduce uniform
loss on these paths (0-10% each way) at the core links. We
realize that a more realistic approach would be to introduce
only congestion induced loss by simulating self-similar cross-
traffic. Our previous results were gathered using this technique
with a dual-dumbbell topology [3], [4]. However, the simu-
lation time for this technique was too time consuming and
impractical. We did compare representative simulations using
uniform loss versus simulations using cross-traffic based loss,
and our analysis remains unchanged. We therefore proceeded
with uniform loss on the paths instead of cross-traffic based
loss.

We simulate a 4MB file transfer with and without failure.
The failure scenario has a bi-directional failure on the primary
path occurring at time = 4 seconds into the transfer (with
0% loss on the primary path, about 53% of the file transfer
is complete by this time), and remaining until the end of
the simulation. The failure is simulated by a link breakage
between the routers on the primary path. The three input
parameters for each simulation are the primary path’s loss
rate, the alternate path’s loss rate, and one of the ten retrans-
mission schemes. Each parameter set is simulated with 120
different seeds. Our results exclude the few simulations that
were unable to successfully establish an association due to
loss conditions.

IV. NON-FAILURE SCENARIOS

We collected results for 0-10% loss on the primary and
alternate paths, but due to space constraints in this paper, we
do not include all results for non-failure scenarios. Figure 3
illustrates the results for 1-9% primary path loss rates. For
each graph in Figure 3, the alternate path’s loss rate is varied
on the � -axis, ranging from 0-10%. The graphs in Figure 3
compare the average transfer time of a 4MB file using SCTP’s

current retransmission scheme (AllRtxAlt) versus five of the
remaining nine schemes. The schemes compared in Figure 3
are the best performing schemes of each retransmission
policy: AllRtxAlt+HAR, AllRtxAlt+TS, AllRtxSame+MFR,
FrSameRtoAlt+MFR, FrSameRtoAlt+MFR+HAR.

We ensure statistical confidence by calculating the 90%
confidence interval with an acceptable error of 10% of the
mean. The 90% confidence intervals are not shown in the
graphs for clarity. These intervals vary for different loss
rates and retransmission schemes, but on average the 90%
confidence interval is about +/- 2 seconds around the mean.
The largest 90% confidence interval is about +/- 13 seconds
around the mean; as expected, larger confidence intervals tend
to be for higher loss rates.

Figure 3 clearly shows that AllRtxAlt performs the worst
overall. This scheme does well when the alternate path loss
rate is very low, but its performance degrades rapidly as the
alternate path loss rate increases. We have previously shown
that this behavior is due to overly conservative RTOs for the
alternate destination. In other words, the alternate destination
does not have enough traffic that can gather RTT measure-
ments. Thus, if a retransmission on the alternate path is lost,
it will eventually timeout, double the alternate destination’s
RTO, and be retransmitted on the primary path. The doubled
RTO is only reduced when a new RTT measurement is
obtained for the alternate destination, but heartbeats (normally
sent approximately every 30 seconds) are the only traffic on
the alternate path that can measure the RTT [4].

The HAR and TS algorithms dramatically improve AllRtx-
Alt’s performance, but AltRtxAlt+HAR and AltRtxAlt+TS do
not perform well when the primary path loss rate is 1-5%
and the alternate path loss rate is greater than the primary’s.
Increasing the number of RTT measurements may alleviate
the overly conservative RTO issue, but it cannot avoid the
drawback of retransmitting on an alternate path with a higher
loss rate than the primary path.

AltRtxSame (not shown) and AltRtxSame+MFR also im-
prove performance, but suffer nearly the opposite problem.
They do not perform well when the primary path loss rate
is larger than the alternate’s. Furthermore, when the primary
path loss rate is greater than 8%, they perform poorly for all
alternate path loss rates.

The FrSameRtoAlt policy is intended to be a com-
promise between the other two policies. Figure 3 shows
that FrSameRtoAlt+MFR and FrSameRtoAlt+MFR+HAR al-
most always performs about the same or better than Al-
tRtxSame+MFR. Most of the time, FrSameRtoAlt+MFR and
FrSameRtoAlt+MFR+HAR also perform the same or better
than AllRtxAlt+HAR and AllRtxAlt+TS. AllRtxAlt+HAR
and AllRtxAlt+TS perform the best only when the alternate
path loss rate is significantly less (generally half) than the
primary’s.
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Fig. 3. File transfer time with no failure for primary path loss rates 1-9%

At low primary path loss rates, most of the losses are
detected by fast retransmit. Hence, FrSameRtoAlt will send
most of its lost packets to the same destination as AllRtxSame,
thus experiencing similar results. Furthermore, the fast re-
transmissions do not suffer, as they would with AllRtxAlt,
from overly conservative RTOs for the alternate destination.

As the loss rate on the primary path increases relative to
the alternate path, it becomes more sensible to alleviate the
loss conditions by retransmitting to the alternate path. As a
result, AllRtxSame suffers at higher primary path loss rates
by not using the alternate path. In contrast, FrSameRtoAlt is
able to alleviate severe loss conditions by sending timeout
retransmissions to the alternate path. Since AllRtxAlt sends
all retransmissions to the alternate path, it performs best when
loss conditions on the primary are significantly worse than the
alternate.

We conclude that FrSameRtoAlt is the best overall policy in
non-failure scenarios. The MFR and MFR+HAR algorithms

provide the best improvement to the policy, but the benefits
of MFR+HAR are only visible at 7-10% primary path loss.

V. FAILURE SCENARIOS

We use two metrics to evaluate the retransmission schemes
in failure scenarios: failure detection time and file transfer
time.

A. Failure Detection Time

Failure detection time is the time period from when a
failure occurs to when the SCTP sender detects the failure. In
the current RFC2960, each SCTP endpoint uses both implicit
and explicit probes to dynamically determine the reachability
of its peer’s IP addresses. Transmitted data serve as implicit
probes to a destination (generally, the primary destination),
while explicit probes, called heartbeats, periodically probe
idle destinations. Each timeout (for data or heartbeats) on a
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Fig. 4. Failure detection time for primary path loss rates 0-2%, 4-6%, and 8-10%

particular destination increments an error count for that des-
tination. The error count per destination is cleared whenever
data or a heartbeat sent to that destination is acked. A des-
tination is marked as failed when its error count exceeds the
Path.Max.Retrans (PMR) parameter. If the primary destination
fails, the sender fails over to an alternate destination address
and continues probing the primary destination with heartbeats.
This alternate destination, however, does not become the
new primary destination. The primary destination remains
unchanged to allow a sender to resume sending new data
to the primary destination if and when a future probe to the
primary destination is successfully acked.

Our simulations use the parameter settings recommended
in RFC2960: minimum RTO � �

second, maximum RTO
����� seconds, and PMR ��� . Using these defaults, the first
timeout towards failure detection takes 1 second in the best
case. Then, the exponential back-off procedure doubles the
RTO on each subsequent timeout towards failure detection.
With PMR ��� , six consecutive timeouts are needed to detect

failure, taking at least
�����������! ��"� � �$#�� �%� # seconds.

In the worst case, the first timeout takes the maximum of 60
seconds, and the failure detection time takes �'&(�)��� # ���
seconds.

Figure 4 plots the average failure detection times for
primary path loss rates of 0-2%, 4-6%, and 8-10% (the
others were omitted due to space constraints). Again, 90%
confidence intervals were measured, but are not shown. The
results show that the HAR algorithm lowers the average
failure detection time below the theoretical best case time.
The HAR algorithm interferes with the exponential backoff
procedure in the failure detection mechanism. Some RTO
periods experience more than one timeout: one for data and
one for a heartbeat. These RTO periods double count the
errors for the failed destination, causing failure detection to
occur in fewer RTO periods and sooner than the expected 63
seconds. Although faster failure detection is desirable, this
algorithm does not correctly follow the conservative nature
of the exponential backoff procedure.



AllRtxSame (not shown) and AllRtxSame+MFR are the
only schemes able to achieve the theoretical best case detec-
tion time of 63 seconds at 0% primary path loss. For these
schemes, the average failure detection time is independent
of the alternate path loss rate, but increases as the primary
path loss increases. The reason for the increase is due to the
increased possibility of a timeout immediately before a failure
occurs. In such a case, the failure detection may increase as
follows. The timeout causes the primary destination’s RTO
to be doubled and the lost packet to be retransmitted to the
primary destination. Then the ack for the retransmission clears
the primary destination’s error count, but does not provide an
RTT measurement to reduce the RTO. If the failure occurs
before an RTT measurement is obtained for the primary
destination, then the six consecutive timeouts needed to detect
failure will now take

�*�+�,�- ,�!� � �-#��*� ���.� ���)�
seconds!

On the other hand, the other schemes’ failure detection
times are influenced by the loss rates on both the primary
and alternate paths. The primary path’s influence on failure
detection time is similar to that of AllRtxSame and All-
RtxSame+MFR (explained above). Figure 4 shows that for
AllRtxAlt, AllRtxAlt+TS, and FrSameRtoAlt+MFR the best
case failure detection time is 64 seconds – only slightly longer
than the theoretical minimum. This best case occurs when
both the primary and alternate path loss rates are 0%. While
the primary path’s loss rate remains 0%, the average failure
detection times reach as high as 72, 64, and 72 seconds for
AllRtxAlt, AllRtxAlt+TS, and FrSameRtoAlt+MFR, respec-
tively. Since new data may not be transmitted to the primary
destination until all queued retransmissions on the alternate
path have been sent, the failure detection times for these
schemes depend on the quality of the alternate path. If the
alternate path’s loss rate is high, it will take more time to send
the retransmissions, and thus will increase failure detection
time.

The exception to this trend for AllRtxAlt, AllRtxAlt+TS,
and FrSameRtoAlt+MFR is that the failure detection time
actually decreases when both the primary and alternate path
loss rates are high (see Figure 4’s graph for 10% primary
path loss). This anomaly is caused by the interaction of the
two scenarios described above for dependency on primary
and alternate path loss rates. The longer detection times
at higher primary path loss rates are offset when losses
on the alternate path causes a significant number of lost
retransmissions to be re-retransmitted on the primary path. If
these re-retransmissions get lost and timeout on the primary
path, the primary destination’s error count is incremented
again. As a result, failure detection happens sooner.

Overall, AllRtxSame+MFR detects failure faster and more
consistently than AllRtxAlt, AllRtxAlt+TS, and FrSameR-
toAlt+MFR, but the drawback is that the sender does not
successfully deliver any data until the entire failure detection
process completes and failover occurs. In our simulations

with 0% primary loss, the sender has 30 lost data packets
outstanding when failure occurs. AllRtxAlt, AllRtxAlt+TS,
and FrSameRtoAlt+MFR all successfully retransmit these 30
packets after the first timeout in the failure detection process,
thus delaying them by only 1 second. On the other hand,
AllRtxSame+MFR successfully retransmits the 30 packets
after the failure detection completes, delaying them by at least
63 seconds!

B. File Transfer Time

Figure 5 plots the transfer times for failure scenarios with
primary path loss rates of 0-2%, 4-6%, and 8-10%. In these
transfers, the sender transmits data to the primary for the
first 4 seconds and then a failure occurs on the primary path.
Eventually, the sender fails over to the alternate destination
address, and resumes sending until the 4MB file transfer
completes.

The results show that AllRtxAlt+HAR and FrSameR-
toAlt+MFR+HAR provide the best throughput in failure sce-
narios, but this is due to the HAR algorithm. As explained
in Section V-A, the HAR algorithm detects failure faster, but
interferes with the conservative failure detection process.

AllRtxAlt and AllRtxAlt+TS perform the worst. Their poor
performance is attributed to lower throughput during the non-
failure portion of the transfer (see Figure 3) and longer failure
detection times (see Figure 4).

As Figure 5 shows, AllRtxSame+MFR performs slightly
better than FrSameRtoAlt+MFR. Note, however, that in our
simulations, at least half of the 4MB file is left to be
transferred after the failure occurs. With such a large amount
remaining to be sent, plenty of time is left to close any
gaps in performance. Considering AllRtxSame+MFR’s lack
of transfer progress during failure detection, we argue that
FrSameRtoAlt+MFR would provide better performance if the
transfer were closer to completion at the time of failure.
Therefore, we conclude that FrSameRtoAlt+MFR provides
the best overall performance during failure scenarios.

VI. CONCLUSION AND FUTURE WORK

We have concluded that FrSameRtoAlt+MFR and Fr-
SameRtoAlt+MFR+HAR are the best performing retrans-
mission schemes in non-failure scenarios, and FrSameR-
toAlt+MFR is the best in failure scenarios. Therefore, we
conclude that FrSameRtoAlt+MFR provides the best overall
performance under the conditions evaluated.

Future work is to evaluate the retransmission schemes
in network topologies that have different bandwidth-delay
products on the primary and alternate paths. Multihoming
with two interfaces per endpoint, as done in this paper, is
a special case of mulithoming. The degree of multihoming
should be increased beyond two per endpoint to ensure that
the trends remain the same for / interfaces per endpoint.
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Fig. 5. File transfer time with failure for primary path loss rates 0-2%, 4-6%, and 8-10%
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